Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (51)
  • Open Access

    ARTICLE

    Honeypot Game Theory against DoS Attack in UAV Cyber

    Shangting Miao1, Yang Li2,*, Quan Pan2

    CMC-Computers, Materials & Continua, Vol.76, No.3, pp. 2745-2762, 2023, DOI:10.32604/cmc.2023.037257 - 08 October 2023

    Abstract A space called Unmanned Aerial Vehicle (UAV) cyber is a new environment where UAV, Ground Control Station (GCS) and business processes are integrated. Denial of service (DoS) attack is a standard network attack method, especially suitable for attacking the UAV cyber. It is a robust security risk for UAV cyber and has recently become an active research area. Game theory is typically used to simulate the existing offensive and defensive mechanisms for DoS attacks in a traditional network. In addition, the honeypot, an effective security vulnerability defense mechanism, has not been widely adopted or modeled… More >

  • Open Access

    ARTICLE

    Multi-Domain Malicious Behavior Knowledge Base Framework for Multi-Type DDoS Behavior Detection

    Ouyang Liu, Kun Li*, Ziwei Yin, Deyun Gao, Huachun Zhou

    Intelligent Automation & Soft Computing, Vol.37, No.3, pp. 2955-2977, 2023, DOI:10.32604/iasc.2023.039995 - 11 September 2023

    Abstract Due to the many types of distributed denial-of-service attacks (DDoS) attacks and the large amount of data generated, it becomes a challenge to manage and apply the malicious behavior knowledge generated by DDoS attacks. We propose a malicious behavior knowledge base framework for DDoS attacks, which completes the construction and application of a multi-domain malicious behavior knowledge base. First, we collected malicious behavior traffic generated by five mainstream DDoS attacks. At the same time, we completed the knowledge collection mechanism through data pre-processing and dataset design. Then, we designed a malicious behavior category graph and… More >

  • Open Access

    ARTICLE

    A Modified PointNet-Based DDoS Attack Classification and Segmentation in Blockchain

    Jieren Cheng1,3, Xiulai Li1,2,3,4,*, Xinbing Xu2,3, Xiangyan Tang1,3, Victor S. Sheng5

    Computer Systems Science and Engineering, Vol.47, No.1, pp. 975-992, 2023, DOI:10.32604/csse.2023.039280 - 26 May 2023

    Abstract With the rapid development of blockchain technology, the number of distributed applications continues to increase, so ensuring the security of the network has become particularly important. However, due to its decentralized, decentralized nature, blockchain networks are vulnerable to distributed denial-of-service (DDoS) attacks, which can lead to service stops, causing serious economic losses and social impacts. The research questions in this paper mainly include two aspects: first, the classification of DDoS, which refers to detecting whether blockchain nodes are suffering DDoS attacks, that is, detecting the data of nodes in parallel; The second is the problem… More >

  • Open Access

    ARTICLE

    Feature Selection for Detecting ICMPv6-Based DDoS Attacks Using Binary Flower Pollination Algorithm

    Adnan Hasan Bdair Aighuraibawi1,2, Selvakumar Manickam1,*, Rosni Abdullah3, Zaid Abdi Alkareem Alyasseri4,5, Ayman Khallel6, Dilovan Asaad Zebari9, Hussam Mohammed Jasim7, Mazin Mohammed Abed8, Zainb Hussein Arif7

    Computer Systems Science and Engineering, Vol.47, No.1, pp. 553-574, 2023, DOI:10.32604/csse.2023.037948 - 26 May 2023

    Abstract Internet Protocol version 6 (IPv6) is the latest version of IP that goal to host 3.4 × 1038 unique IP addresses of devices in the network. IPv6 has introduced new features like Neighbour Discovery Protocol (NDP) and Address Auto-configuration Scheme. IPv6 needed several protocols like the Address Auto-configuration Scheme and Internet Control Message Protocol (ICMPv6). IPv6 is vulnerable to numerous attacks like Denial of Service (DoS) and Distributed Denial of Service (DDoS) which is one of the most dangerous attacks executed through ICMPv6 messages that impose security and financial implications. Therefore, an Intrusion Detection System (IDS)… More >

  • Open Access

    ARTICLE

    DDoS Attack Detection in Cloud Computing Based on Ensemble Feature Selection and Deep Learning

    Yousef Sanjalawe1,2,*, Turke Althobaiti3,4

    CMC-Computers, Materials & Continua, Vol.75, No.2, pp. 3571-3588, 2023, DOI:10.32604/cmc.2023.037386 - 31 March 2023

    Abstract Intrusion Detection System (IDS) in the cloud Computing (CC) environment has received paramount interest over the last few years. Among the latest approaches, Deep Learning (DL)-based IDS methods allow the discovery of attacks with the highest performance. In the CC environment, Distributed Denial of Service (DDoS) attacks are widespread. The cloud services will be rendered unavailable to legitimate end-users as a consequence of the overwhelming network traffic, resulting in financial losses. Although various researchers have proposed many detection techniques, there are possible obstacles in terms of detection performance due to the use of insignificant traffic… More >

  • Open Access

    ARTICLE

    A Novel Framework for DDoS Attacks Detection Using Hybrid LSTM Techniques

    Anitha Thangasamy*, Bose Sundan, Logeswari Govindaraj

    Computer Systems Science and Engineering, Vol.45, No.3, pp. 2553-2567, 2023, DOI:10.32604/csse.2023.032078 - 21 December 2022

    Abstract The recent development of cloud computing offers various services on demand for organization and individual users, such as storage, shared computing space, networking, etc. Although Cloud Computing provides various advantages for users, it remains vulnerable to many types of attacks that attract cyber criminals. Distributed Denial of Service (DDoS) is the most common type of attack on cloud computing. Consequently, Cloud computing professionals and security experts have focused on the growth of preventive processes towards DDoS attacks. Since DDoS attacks have become increasingly widespread, it becomes difficult for some DDoS attack methods based on individual… More >

  • Open Access

    ARTICLE

    RMCARTAM For DDoS Attack Mitigation in SDN Using Machine Learning

    M. Revathi, V. V. Ramalingam*, B. Amutha

    Computer Systems Science and Engineering, Vol.45, No.3, pp. 3023-3036, 2023, DOI:10.32604/csse.2023.033600 - 21 December 2022

    Abstract The impact of a Distributed Denial of Service (DDoS) attack on Software Defined Networks (SDN) is briefly analyzed. Many approaches to detecting DDoS attacks exist, varying on the feature being considered and the method used. Still, the methods have a deficiency in the performance of detecting DDoS attacks and mitigating them. To improve the performance of SDN, an efficient Real-time Multi-Constrained Adaptive Replication and Traffic Approximation Model (RMCARTAM) is sketched in this article. The RMCARTAM considers different parameters or constraints in running different controllers responsible for handling incoming packets. The model is designed with multiple… More >

  • Open Access

    ARTICLE

    DoS Attack Detection Based on Deep Factorization Machine in SDN

    Jing Wang1, Xiangyu Lei1, Qisheng Jiang1, Osama Alfarraj2, Amr Tolba2, Gwang-jun Kim3,*

    Computer Systems Science and Engineering, Vol.45, No.2, pp. 1727-1742, 2023, DOI:10.32604/csse.2023.030183 - 03 November 2022

    Abstract Software-Defined Network (SDN) decouples the control plane of network devices from the data plane. While alleviating the problems presented in traditional network architectures, it also brings potential security risks, particularly network Denial-of-Service (DoS) attacks. While many research efforts have been devoted to identifying new features for DoS attack detection, detection methods are less accurate in detecting DoS attacks against client hosts due to the high stealth of such attacks. To solve this problem, a new method of DoS attack detection based on Deep Factorization Machine (DeepFM) is proposed in SDN. Firstly, we select the Growth… More >

  • Open Access

    ARTICLE

    Progressive Transfer Learning-based Deep Q Network for DDOS Defence in WSN

    S. Rameshkumar1,*, R. Ganesan2, A. Merline1

    Computer Systems Science and Engineering, Vol.44, No.3, pp. 2379-2394, 2023, DOI:10.32604/csse.2023.027910 - 01 August 2022

    Abstract In The Wireless Multimedia Sensor Network (WNSMs) have achieved popularity among diverse communities as a result of technological breakthroughs in sensor and current gadgets. By utilising portable technologies, it achieves solid and significant results in wireless communication, media transfer, and digital transmission. Sensor nodes have been used in agriculture and industry to detect characteristics such as temperature, moisture content, and other environmental conditions in recent decades. WNSMs have also made apps easier to use by giving devices self-governing access to send and process data connected with appropriate audio and video information. Many video sensor network… More >

  • Open Access

    ARTICLE

    Evidence-Based Federated Learning for Set-Valued Classification of Industrial IoT DDos Attack Traffic

    Jiale Cheng1, Zilong Jin1,2,*

    Journal on Internet of Things, Vol.4, No.3, pp. 183-195, 2022, DOI:10.32604/jiot.2022.042054 - 12 June 2023

    Abstract A novel Federated learning classifier is proposed using the Dempster-Shafer (DS) theory for the set-valued classification of industrial IoT Distributed Denial of Service (DDoS) attack traffic. The proposed classifier, referred to as the evidence-based federated learning classifier, employs convolution and pooling layers to extract high-dimensional features of Distributed Denial of Service (DDoS) traffic from the local data of private industrial clients. The characteristics obtained from the various participants are transformed into mass functions and amalgamated utilizing Dempster’s rule within the DS layer, situated on the federated server. Lastly, the set value classification task of attack More >

Displaying 21-30 on page 3 of 51. Per Page