Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (54)
  • Open Access

    ARTICLE

    Effect of Velocity Ratio, Viscosity Ratio, Contact Angle, and Channel Size Ratio on Droplet Formation

    Mohammed Bourega*, Ibrahim Kromba, Khadidja Fellah Arbi, Sofiane Soulimane

    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.10, pp. 2471-2480, 2023, DOI:10.32604/fdmp.2023.028661

    Abstract This study uses a T-junction to examine the effects of different parameters (velocity ratio, viscosity, contact angle, and channel size ratio) on the generation of microdroplets, related rate, and size. More specifically, numerical simulations are exploited to investigate situations with a velocity varying from 0.004 to 1.6 m/s for the continuous phase and from 0.004 to 0.8 m/s for the dispersed phase, viscosity ratios (0.668, 1, 6.689, 10, 66.899), contact angle 80° < θ < 270° and four different canal size ratios (1, 1.5, 2 and 4). The results show that canal size influences droplet size and the generation rate.… More > Graphic Abstract

    Effect of Velocity Ratio, Viscosity Ratio, Contact Angle, and Channel Size Ratio on Droplet Formation

  • Open Access

    ARTICLE

    PREDICTION OF MASS TRANSFER COEFFICIENT OF THE CONTINUOUS PHASE IN A STRUCTURED PACKED EXTRACTION COLUMN IN THE PRESENCE OF SIO2 NANOPARTICLES

    Fereshteh Salimi Nanadegani, Bengt Sunden*

    Frontiers in Heat and Mass Transfer, Vol.14, pp. 1-11, 2020, DOI:10.5098/hmt.14.21

    Abstract In this experimental study, mass transfer and hydrodynamic parameters of water/kerosene/acetic acid system in a packed column were investigated, in which the mass transfer direction was set from the continuous phase (saturated water of kerosene and acetic acid) to the dispersed phase (saturated kerosene of water) in all the experiments. To assess the impact of nanoparticles on mass transfer, the experiments were performed in the presence of SiO2 nanoparticles and absence of the nanoparticles. The results showed that the addition of the nanoparticles to the base fluid (saturated kerosene of water) increased the mass transfer efficiency to the critical concentration,… More >

  • Open Access

    ARTICLE

    A COMPARISON OF THE EQUILIBRIUM AND THE DROPLETS BASED NON-EQUILIBRIUM COMPRESSIBLE PHASE CHANGE SOLVERS FOR CONDENSATION OF CARBON DIOXIDE INSIDE NOZZLES

    Kapil Dev Choudhary, Shyam Sunder Yadav , Mani Sankar Dasgupta

    Frontiers in Heat and Mass Transfer, Vol.16, pp. 1-10, 2021, DOI:10.5098/hmt.16.14

    Abstract In the current work, we simulate the condensation of supercritical CO2 during its high speed flow inside two different converging-diverging nozzles. We use the homogeneous equilibrium method and the classical nucleation theory based non-equilibrium phase change model for this purpose. The simulation results indicate significant influence of the nozzle inlet condition, nozzle shape and the fluid thermophysical behaviour on the nonequilibrium conditions prevailing inside the nozzles. We observe very low, ∼0.15 K, supercooling for the flow of CO2 inside the Claudio Lettieri nozzle compared to the supercooling of ∼3 K observed for the Berana nozzle. Very high nucleation rate (∼… More >

  • Open Access

    ARTICLE

    Numerical Simulation of Droplets Interacting with a Microcolumnar Solid Structure

    Liang Yang*, Tianle Xi, Zhixing Wang

    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.6, pp. 1585-1608, 2023, DOI:10.32604/fdmp.2023.024987

    Abstract The VOF method is used to simulate the dynamics of a droplet interacting with a structure consisting of an array of microcolumns mounted on a flat surface. Such a specific configuration is intended to mimic the typical properties of lotus leaves, which typically display regularly arranged micron-scale papillary structures. After setting the initial velocity of the simulated droplet on the basis of practical considerations, an analysis is conducted about the effect of the characteristic size of the microstructure on the apparent contact angle. The pressure variation in the microstructure caves is also examined. The simulation results show that the change… More >

  • Open Access

    PROCEEDINGS

    Dynamic Behaviors after Droplet Impact onto Liquid Surface

    Kazuhiko Kakuda1,*, Asuka Iizumi1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.24, No.1, pp. 1-5, 2022, DOI:10.32604/icces.2022.08695

    Abstract In this paper, we present the dynamic behaviors of crown formation, central jet, and secondary droplets generated with droplet impact onto a liquid surface by using experimental and computational approaches. In our experiment, the dynamic behaviors after a droplet impact are recorded using a high-speed camera with appropriate resolution and exposure time. On the other hand, we simulate numerically the similar behaviors using the VOF (volume of fluid) solver in the OpenFOAM. As a fluid field, we consider the multiphase flows with free surfaces based on incompressible Navier-Stokes equations in the software codes. Some qualitative comparisons between the experimental and… More >

  • Open Access

    ARTICLE

    Thermographic Observation of High-Frequency Ethanol Droplet Train Impingement on Heated Aluminum and Glass Surfaces

    Baris Burak Kanbur, Sheng Quan Heng, Fei Duan*

    FDMP-Fluid Dynamics & Materials Processing, Vol.18, No.6, pp. 1711-1718, 2022, DOI: 10.32604/fdmp.2022.021792

    Abstract The present study considers the impingement of a train of ethanol droplets on heated aluminum and glass surfaces. The surface temperature is allowed to vary in the interval 140°C–240°C. Impingement is considered with an inclination of 63 degrees. The droplet diameter is 0.2 mm in both aluminum and glass surface experiments. Thermal gradients are observed with a thermographic camera. It is found that in comparison to glass, the aluminum surface displays very small liquid accumulations and better evaporation performance due to its higher thermal conductivity. The relatively low thermal conductivity of glass results in higher thermal gradients on the surface.… More > Graphic Abstract

    Thermographic Observation of High-Frequency Ethanol Droplet Train Impingement on Heated Aluminum and Glass Surfaces

  • Open Access

    ARTICLE

    Hydrodynamic Pattern Investigation of Ethanol Droplet Train Impingement on Heated Aluminum Surface

    Baris Burak Kanbur, Sheng Quan Heng, Fei Duan*

    FDMP-Fluid Dynamics & Materials Processing, Vol.18, No.5, pp. 1331-1338, 2022, DOI:10.32604/fdmp.2022.021793

    Abstract Steady-state hydrodynamic patterns of ethanol droplet train impingement on the heated aluminum surface is investigated in the surface temperature range of 80°C–260°C using two different Weber numbers (We) of 618 and 792. Instead of a vertical train impingement, the droplet train is sent to the aluminum surface with an incline of 63 degrees. Changes in the spreading length are observed at different surface temperatures for two different We values, which are obtained by using two different pinholes with 100 and 150 μm diameters. The greatest spreading length is seen at the lowest surface temperature (80°C) and it continuously decreases until… More >

  • Open Access

    ARTICLE

    Anti-lipid droplets accumulation effect of Annona montana (mountain soursop) leaves extract on differentiation of preadipocytes

    IVY LEUNG1, MARIA-LUISA VEISAGA2, MARGARITA ESPINAL1, WEI ZHANG1, ROBERT BARNUM1, MANUEL ALEJANDRO BARBIERI1,2,3,4,*

    BIOCELL, Vol.46, No.3, pp. 567-578, 2022, DOI:10.32604/biocell.2022.014009

    Abstract The Annona genus is a member of Annonaceae, one of the largest families of plants across tropical and sub-tropical regions. This family has been used in several ethnomedicinal practices to treat a multitude of human diseases. However, the molecular mechanism underlying its effect on the lipid droplet formation and on the expression of adipogenic markers of this plant remain to be investigated. In this study, we examined whether the extracts from the aerial part of Annona montana affect in vitro differentiation of preadipocytes. For our investigations, both mouse embryo fibroblast 3T3-L1 and normal human primary subcutaneous preadipocytes were incubated with… More >

  • Open Access

    ARTICLE

    Influence of Electrical Field Distortions Induced by Water Droplets on the Contamination Characteristics of an Insulator

    Yukun Lv, Yuechi Wang*, Jiawen Wang

    FDMP-Fluid Dynamics & Materials Processing, Vol.17, No.5, pp. 971-987, 2021, DOI:10.32604/fdmp.2021.016602

    Abstract When separated water droplets condense on the surface of a composite insulator, the electrical field on the insulator surface is distorted. In turn, such distortions change the trajectories of pollution particles. In this study, the COMSOL software is used to simulate such a process for the FXBW4-10/100 composite insulator with or without water droplets condensation under a 10 kV DC voltage. The influence of the wind speed and particles concentration on the contamination characteristics of the considered 110 kV insulator is analyzed. The results show that: 1) in the presence of water droplets on the insulator surface, the ratio of… More >

  • Open Access

    ARTICLE

    Experimental Analysis of a Pneumatic Drop-on-Demand (DOD) Injection Technology for 3D Printing Using a Gallium-Indium Alloy

    Yanpu Chao1, Hao Yi2,3,*

    FDMP-Fluid Dynamics & Materials Processing, Vol.17, No.3, pp. 587-595, 2021, DOI:10.32604/fdmp.2021.015478

    Abstract Many liquid metals have a high boiling point, strong electrical conductivity, high thermal conductivity, and non-toxic properties, which make them ideal targets for applications in different fields such as optics, microcircuits, electronic switches, micro-electromechanical System (MEMS) devices and 3D printing manufacturing. However, owing to the generally high surface tension of these liquids, achieving uniform micro-droplets is often a challenge due to the inherent difficulties in controlling their size and shape. In this study, a gallium indium alloy (GaIn24.5) has been used in combination with a pneumatic drop-on-demand (DOD) injection technology to carry out a series of experiments. The micro-droplet forming… More >

Displaying 11-20 on page 2 of 54. Per Page