Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (18)
  • Open Access

    ARTICLE

    Cross-Diffusion Effects on an MHD Williamson Nanofluid Flow Past a Nonlinear Stretching Sheet Immersed in a Permeable Medium

    R. Madan Kumar1, R. Srinivasa Raju2, F. Mebarek-Oudina3,*, M. Anil Kumar4, V. K. Narla2

    Frontiers in Heat and Mass Transfer, Vol.22, No.1, pp. 15-34, 2024, DOI:10.32604/fhmt.2024.048045

    Abstract The primary aim of this research endeavor is to examine the characteristics of magnetohydrodynamic Williamson nanofluid flow past a nonlinear stretching surface that is immersed in a permeable medium. In the current analysis, the impacts of Soret and Dufour (cross-diffusion effects) have been attentively taken into consideration. Using appropriate similarity variable transformations, the governing nonlinear partial differential equations were altered into nonlinear ordinary differential equations and then solved numerically using the Runge Kutta Fehlberg-45 method along with the shooting technique. Numerical simulations were then perceived to show the consequence of various physical parameters on the plots of velocity, temperature, and… More > Graphic Abstract

    Cross-Diffusion Effects on an MHD Williamson Nanofluid Flow Past a Nonlinear Stretching Sheet Immersed in a Permeable Medium

  • Open Access

    ARTICLE

    HALL AND ION SLIP EFFECTS ON FREE CONVECTION HEAT AND MASS TRANSFER OF CHEMICALLY REACTING COUPLE STRESS FLUID IN A POROUS EXPANDING OR CONTRACTING WALLS WITH SORET AND DUFOUR EFFECTS

    Odelu Ojjela*, N. Naresh Kumar

    Frontiers in Heat and Mass Transfer, Vol.5, pp. 1-12, 2014, DOI:10.5098/hmt.5.22

    Abstract This article deals the Hall and ion slip currents on free convection flow, heat and mass transfer of an electrically conducting couple stress fluid through porous channels with chemical reaction, Soret and Dufour effects. Assume that there is symmetric suction or injection along the expanding or contracting walls, which are maintained at different constant temperatures and concentrations. The governing partial differential equations are reduced to nonlinear dimensionless ordinary differential equations using the similarity transformations and solved numerically by the method of quasilinearization. The effects of various parameters on non-dimensional velocity components, temperature distribution and concentration are discussed in detail and… More >

  • Open Access

    ARTICLE

    INFLUENCE OF VARIABLE THERMAL CONDUCTIVITY ON MHD CASSON FLUID FLOW OVER A STRETCHING SHEET WITH VISCOUS DISSIPATION, SORET AND DUFOUR EFFECTS

    B. Venkateswarlua, P.V. Satya Narayanab,*

    Frontiers in Heat and Mass Transfer, Vol.7, pp. 1-9, 2016, DOI:10.5098/hmt.7.16

    Abstract This paper studies the Soret and Dufour effects on MHD flow of a Casson fluid past a stretching sheet in the presence of chemical reaction, viscous dissipation and variable thermal conductivity. The fluid is taken to be electrically conducting and the flow is induced by a stretching surface. The governing partial differential equations are transformed into non-linear ordinary differential equations using similarity transformations. The resulting equations are then solved numerically by shooting method. The impact of various stimulating parameters on the flow, heat and mass transfer characteristics are analyzed and discussed in detail through graphs. It is observed that the… More >

  • Open Access

    ARTICLE

    MHD MIXED CONVECTION STAGNATION POINT FLOW TOWARDS A STRETCHING SHEET IN THE PRESENCE OF DUFOUR EFFECT, RADIATION EFFECT AND WITH VARIABLE FLUID VISCOSITY

    Vandana Bisht*

    Frontiers in Heat and Mass Transfer, Vol.7, pp. 1-7, 2016, DOI:10.5098/hmt.7.19

    Abstract In this paper the steady laminar magneto hydrodynamic (MHD) mixed convection boundary layer flow towards a vertical stretching sheet with variable fluid viscosity, radiation and in the presence of Dufour’s effect have been investigated. The governing partial differential equations are transformed into set of ordinary differential equations using similarity transformation, and then these equations have been solved numerically using Runge- Kutta method with shooting technique. Results shows that magnitude of skin friction coefficient decreases, while magnitude of heat transfer coefficient and mass transfer coefficient increases with decreasing values of viscosity variation parameter for the case of opposing flow. But in… More >

  • Open Access

    ARTICLE

    SORET AND DUFOUR EFFECTS ON MHD RADIATIVE HEAT AND MASS TRANSFER FLOW OF A JEFFREY FLUID OVER A STRETCHING SHEET

    D. Harish Babua , B. Venkateswarlub , P.V. Satya Narayanac,*

    Frontiers in Heat and Mass Transfer, Vol.8, pp. 1-9, 2017, DOI:10.5098/hmt.8.5

    Abstract This paper studies the combined effects of Soret (thermal-diffusion) and Dufour (diffusion-thermo) on magnetohydrodynamics (MHD) boundary layer flow of a Jeffrey fluid past a stretching surface with chemical reaction and heat source. Using the similarity transformations, the governing equations are transformed into a set of non-linear ordinary differential equations (ODE’s). The resulting equations are then solved numerically by using the shooting method along with Runge-Kutta fourth order integration scheme. Numerical results for the velocity, temperature and concentration distributions as well as the skin-friction coefficient, Nusselt number and Sherwood number are discussed in detail and displayed graphically for various physical parameters.… More >

  • Open Access

    ARTICLE

    STEADY-STATE TRANSPORT PHENOMENA ON INDUCED MAGNETIC FIELD MODELLING FOR NON-NEWTONIAN TANGENT HYPERBOLIC FLUID FROM AN ISOTHERMAL SPHERE WITH SORET AND DUFOUR EFFECTS

    A. Subba Raoa,*, L. Nagarajaa,b, M. Sudhakar Reddya , M. Surya Narayana Reddyb

    Frontiers in Heat and Mass Transfer, Vol.9, pp. 1-11, 2017, DOI:10.5098/hmt.9.17

    Abstract This article investigates the theoretical steady magneto hydrodynamic heat flow of incompressible non-Newtonian Tangent Hyperbolic fluid flow over a sphere with Soret and Dufour effects. The governing coupled non-linear partial differential equations are reduced to non-similarity boundary layer equations using appropriate transformation and then solved using the finite difference Keller-Box method. The effect of various flow parameters on the velocity, temperature and concentration are analyzed and presented graphically. More >

  • Open Access

    ARTICLE

    SORET AND DUFOUR EFFECTS ON MHD FLOW OF A MAXWELL FLUID OVER A STRETCHING SHEET WITH JOULE HEATING

    B. Venkateswarlua, P.V. Satya Narayanab,*

    Frontiers in Heat and Mass Transfer, Vol.9, pp. 1-10, 2017, DOI:10.5098/hmt.9.11

    Abstract An analysis has been carried out to study the mixed convection flow, heat and mass transfer of an incompressible electrically conducting Maxwell fluid past a vertical stretching sheet in the presence of chemical reaction with thermal diffusion (Soret) and diffusion-thermo (Dufour) effects. The governing nonlinear partial differential equations along with the appropriate boundary conditions are non-dimensionalized using suitable similarity variables. The resulting transformed ordinary differential equations are then solved numerically by shooting technique with fourth order Runge - Kutta method. The influence of various physical parameters on the flow, heat and mass transfer characteristics are discussed through graphs and tables.… More >

  • Open Access

    ARTICLE

    SORET AND DUFOUR EFFECTS ON UNSTEADY HYDROMAGNETIC DUSTY FLUID FLOW PAST AN EXPONENTIALLY ACCELERATED PLATE WITH VARIABLE VISCOSITY AND THERMAL CONDUCTIVITY

    Jadav Konch*

    Frontiers in Heat and Mass Transfer, Vol.10, pp. 1-10, 2018, DOI:10.5098/hmt.10.29

    Abstract Soret and Dufour effects on the unsteady flow of a viscous incompressible dusty fluid past an exponentially accelerated vertical plate with viscous dissipation have been considered in the presence of heat source and magnetic field. The viscosity and thermal conductivity of the fluid are assumed to be varying with respect to temperature. Saffman model of dusty fluid is considered for the investigation. The non-linear partial differential equations with prescribed boundary conditions governing the flow are discretized using Crank-Nicolson formula and the resulting finite difference equations are solved by an iterative scheme based on the Gauss-Seidel method by developing computer codes… More >

  • Open Access

    ARTICLE

    DOUBLE-DIFFUSIVE NATURAL CONVECTION OF LOW PRANDTL NUMBER LIQUIDS WITH SORET AND DUFOUR EFFECTS

    Gang Qiua , Mo Yanga,*, Jin Wangb , Yuwen Zhangc

    Frontiers in Heat and Mass Transfer, Vol.10, pp. 1-8, 2018, DOI:10.5098/hmt.10.24

    Abstract An unsteady numerical model for double-diffusive natural convection of low Prandtl number liquids with Soret and Dufour effects inside the horizontal cavity is developed. The thermosolutal model is solved numerically using the SIMPLE algorithm with QUICK scheme. The flow field, temperature and concentration distributions for different buoyancy ratios, Rayleigh numbers and aspect ratios under different Prandtl numbers are studied systematically. The results reveal that the flow structure develops from conduction-dominated to convection as buoyancy ratio increases under different Prandtl numbers. Heat transfer intensity keeps constant and mass transfer intensity grows slowly before a critical point as Rayleigh number increases for… More >

  • Open Access

    ARTICLE

    COMPUTATION OF UNSTEADY MHD MIXED CONVECTIVE HEAT AND MASS TRANSFER IN DISSIPATIVE REACTIVE MICROPOLAR FLOW CONSIDERING SORET AND DUFOUR EFFECTS

    M.D. Shamshuddina,*, A.J. Chamkhab,c, Thirupathi Thummad, M.C. Rajue

    Frontiers in Heat and Mass Transfer, Vol.10, pp. 1-15, 2018, DOI:10.5098/hmt.10.15

    Abstract In the current paper, a finite element computational solution is conducted for MHD double diffusive flow characterizing dissipative micropolar mixed convective heat and mass transfer adjacent to a vertical porous plate embedded in a saturated porous medium. The micropolar fluid is also chemically reacting, both Soret and Dufour effects and also heat absorption included. The governing partial differential equations for momentum, heat, angular momentum and species conservation are transformed into dimensionless form under the assumption of low Reynolds number with appropriate dimensionless quantities. The emerging boundary value problem is then solved numerically with an efficient computational finite element method employing… More >

Displaying 1-10 on page 1 of 18. Per Page