Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (1,546)
  • Open Access

    ARTICLE

    SBL-JP-0004: A promising dual inhibitor of JAK2 and PI3KCD against gastric cancer

    HASSAN M. OTIFI*

    Oncology Research, Vol.33, No.1, pp. 235-243, 2025, DOI:10.32604/or.2024.055677 - 20 December 2024

    Abstract Background: Gastric cancer (GC) remains a global health burden and is often characterized by heterogeneous molecular profiles and resistance to conventional therapies. The phosphoinositide 3-kinase and PI3K and Janus kinase (JAK) signal transducer and activator of transcription (JAK-STAT) pathways play pivotal roles in GC progression, making them attractive targets for therapeutic interventions. Methods: This study applied a computational and molecular dynamics simulation approach to identify and characterize SBL-JP-0004 as a potential dual inhibitor of JAK2 and PI3KCD kinases. KATOIII and SNU-5 GC cells were used for in vitro evaluation. Results: SBL-JP-0004 exhibited a robust binding affinity for… More >

  • Open Access

    ARTICLE

    Stability Prediction in Smart Grid Using PSO Optimized XGBoost Algorithm with Dynamic Inertia Weight Updation

    Adel Binbusayyis*, Mohemmed Sha

    CMES-Computer Modeling in Engineering & Sciences, Vol.142, No.1, pp. 909-931, 2025, DOI:10.32604/cmes.2024.058202 - 17 December 2024

    Abstract Prediction of stability in SG (Smart Grid) is essential in maintaining consistency and reliability of power supply in grid infrastructure. Analyzing the fluctuations in power generation and consumption patterns of smart cities assists in effectively managing continuous power supply in the grid. It also possesses a better impact on averting overloading and permitting effective energy storage. Even though many traditional techniques have predicted the consumption rate for preserving stability, enhancement is required in prediction measures with minimized loss. To overcome the complications in existing studies, this paper intends to predict stability from the smart grid… More >

  • Open Access

    ARTICLE

    Dynamic Multi-Graph Spatio-Temporal Graph Traffic Flow Prediction in Bangkok: An Application of a Continuous Convolutional Neural Network

    Pongsakon Promsawat1, Weerapan Sae-dan2,*, Marisa Kaewsuwan3, Weerawat Sudsutad3, Aphirak Aphithana3

    CMES-Computer Modeling in Engineering & Sciences, Vol.142, No.1, pp. 579-607, 2025, DOI:10.32604/cmes.2024.057774 - 17 December 2024

    Abstract The ability to accurately predict urban traffic flows is crucial for optimising city operations. Consequently, various methods for forecasting urban traffic have been developed, focusing on analysing historical data to understand complex mobility patterns. Deep learning techniques, such as graph neural networks (GNNs), are popular for their ability to capture spatio-temporal dependencies. However, these models often become overly complex due to the large number of hyper-parameters involved. In this study, we introduce Dynamic Multi-Graph Spatial-Temporal Graph Neural Ordinary Differential Equation Networks (DMST-GNODE), a framework based on ordinary differential equations (ODEs) that autonomously discovers effective spatial-temporal… More >

  • Open Access

    ARTICLE

    A Novel Model for Describing Rail Weld Irregularities and Predicting Wheel-Rail Forces Using a Machine Learning Approach

    Linlin Sun1,2, Zihui Wang3, Shukun Cui1,2, Ziquan Yan1,2,*, Weiping Hu3, Qingchun Meng3

    CMES-Computer Modeling in Engineering & Sciences, Vol.142, No.1, pp. 555-577, 2025, DOI:10.32604/cmes.2024.056023 - 17 December 2024

    Abstract Rail weld irregularities are one of the primary excitation sources for vehicle-track interaction dynamics in modern high-speed railways. They can cause significant wheel-rail dynamic interactions, leading to wheel-rail noise, component damage, and deterioration. Few researchers have employed the vehicle-track interaction dynamic model to study the dynamic interactions between wheel and rail induced by rail weld geometry irregularities. However, the cosine wave model used to simulate rail weld irregularities mainly focuses on the maximum value and neglects the geometric shape. In this study, novel theoretical models were developed for three categories of rail weld irregularities, based… More >

  • Open Access

    ARTICLE

    An SPH Framework for Earthquake-Induced Liquefaction Hazard Assessment of Geotechnical Structures

    Sourabh Mhaski*, G. V. Ramana

    CMES-Computer Modeling in Engineering & Sciences, Vol.142, No.1, pp. 251-277, 2025, DOI:10.32604/cmes.2024.055963 - 17 December 2024

    Abstract Earthquake-induced soil liquefaction poses significant risks to the stability of geotechnical structures worldwide. An understanding of the liquefaction triggering, and the post-failure large deformation behaviour is essential for designing resilient infrastructure. The present study develops a Smoothed Particle Hydrodynamics (SPH) framework for earthquake-induced liquefaction hazard assessment of geotechnical structures. The coupled flow-deformation behaviour of soils subjected to cyclic loading is described using the PM4Sand model implemented in a three-phase, single-layer SPH framework. A staggered discretisation scheme based on the stress particle SPH approach is adopted to minimise numerical inaccuracies caused by zero-energy modes and tensile… More >

  • Open Access

    ARTICLE

    Dynamic Interaction Analysis of Coupled Axial-Torsional-Lateral Mechanical Vibrations in Rotary Drilling Systems

    Sabrina Meddah1,2,*, Sid Ahmed Tadjer3, Abdelhakim Idir4, Kong Fah Tee5,6,*, Mohamed Zinelabidine Doghmane1, Madjid Kidouche1

    Structural Durability & Health Monitoring, Vol.19, No.1, pp. 77-103, 2025, DOI:10.32604/sdhm.2024.053541 - 15 November 2024

    Abstract Maintaining the integrity and longevity of structures is essential in many industries, such as aerospace, nuclear, and petroleum. To achieve the cost-effectiveness of large-scale systems in petroleum drilling, a strong emphasis on structural durability and monitoring is required. This study focuses on the mechanical vibrations that occur in rotary drilling systems, which have a substantial impact on the structural integrity of drilling equipment. The study specifically investigates axial, torsional, and lateral vibrations, which might lead to negative consequences such as bit-bounce, chaotic whirling, and high-frequency stick-slip. These events not only hinder the efficiency of drilling… More >

  • Open Access

    ARTICLE

    Orthogonal Probability Approximation for Highly Accurate and Efficient Orbit Uncertainty Propagation

    Pugazhenthi Sivasankar1,*, Austin B. Probe2, Tarek A. Elgohary1

    Digital Engineering and Digital Twin, Vol.2, pp. 169-205, 2024, DOI:10.32604/dedt.2024.052805 - 31 December 2024

    Abstract In Space Situational Awareness (SSA), accurate and efficient uncertainty quantification and propagation are essential for various applications, such as conjunction analysis, track correlation, and orbit prediction. The propagation of the probability density function (PDF) in nonlinear systems results in non-Gaussian distributions, which are difficult to approximate. Furthermore, the computational cost of approximating the PDF increases exponentially with the number of random variables, a phenomenon known as the curse of dimensionality. To address these challenges, the Orthogonal Probability Approximation (OPA) method is presented for high-fidelity uncertainty propagation and PDF approximation in nonlinear dynamical systems. The method… More >

  • Open Access

    ARTICLE

    Investigation of Wellbore Temperature Dynamics during Cement Setting in Deepwater Shallow Formations

    Jing Li, Bo Ning*, Bin Li, Dezhi Qiu

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.12, pp. 2927-2939, 2024, DOI:10.32604/fdmp.2024.057388 - 23 December 2024

    Abstract Offshore deepwater cementing generally faces more challenges than onshore cementing. Shallow formations in deepwater wells often exhibit low structural strength, high porosity, and are prone to shallow gas influx and hydrate formation. These factors require careful control of hydration heat. In this article, we examine the key factors influencing temperature fluctuations in the wellbore and develop a temperature model that accounts for the thermal effects related to cement slurry circulation and hydration. This model is then applied to a deepwater shallow formation cementing case study. The results show that: (1) When cement slurry is displaced More >

  • Open Access

    ARTICLE

    Enhancing Thermal Performance of Building Envelopes Using Hemp Wool and Wood Wool with Phase Change Materials

    Salma Kouzzi1,*, Mouniba Redah1, Souad Morsli2, Mohammed El Ganaoui3, Mohammed Lhassane Lahlaouti1

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.12, pp. 2741-2755, 2024, DOI:10.32604/fdmp.2024.055890 - 23 December 2024

    Abstract This study investigates the potential for enhancing the thermal performance of external walls insulation in warmer climates through the combination of phase change materials (PCMs) and bio-based materials, specifically hemp wool and wood wool. Experimental tests using the heat flow method (HFM), and numerical simulations with ANSYS Fluent software were conducted to assess the dynamic thermal distribution and fluid-mechanical aspects of phase change materials (PCMs) within composite walls. The results demonstrate a notable reduction in peak indoor temperatures, achieving a 58% reduction with hemp wool with a close 40% reduction with wood wool when combined More >

  • Open Access

    ARTICLE

    Influence of Rail Fastening System on the Aerodynamic Performance of Trains under Crosswind Conditions

    Yuzhe Ma, Jiye Zhang*, Jiawei Shi

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.12, pp. 2843-2865, 2024, DOI:10.32604/fdmp.2024.055205 - 23 December 2024

    Abstract The large number and dense layout of rail fastening can significantly affect the aerodynamic performance of trains. Utilizing the Improved Delayed Detached Eddy Simulation (IDDES) approach based on the SST (Shear Stress Transport) k-ω turbulent model, this study evaluates the effects of the rail fastening system on the aerodynamic force, slipstream and train wake under crosswind conditions. The results indicate that in such conditions, compared to the model without rails, the rail and the fastening system reduce the drag force coefficient of the train by 1.69%, while the lateral force coefficients increase by 1.16% and… More >

Displaying 21-30 on page 3 of 1546. Per Page