Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (589)
  • Open Access

    ARTICLE

    Dynamical Interaction Between Information and Disease Spreading in Populations of Moving Agents

    Lingling Xia1, Bo Song2,3, Zhengjun Jing4, Yurong Song5,*, Liang Zhang1

    CMC-Computers, Materials & Continua, Vol.57, No.1, pp. 123-144, 2018, DOI:10.32604/cmc.2018.03738

    Abstract Considering dynamical disease spreading network consisting of moving individuals, a new double-layer network is constructed, one where the information dissemination process takes place and the other where the dynamics of disease spreading evolves. On the basis of Markov chains theory, a new model characterizing the coupled dynamics between information dissemination and disease spreading in populations of moving agents is established and corresponding state probability equations are formulated to describe the probability in each state of every node at each moment. Monte Carlo simulations are performed to characterize the interaction process between information and disease spreading and investigate factors that influence… More >

  • Open Access

    ARTICLE

    The Discrete-Analytical Solution Method for Investigation Dynamics of the Sphere with Inhomogeneous Initial Stresses

    Surkay D. Akbarov1,2, Hatam H. Guliyev3, Yusif M. Sevdimaliyev4, Nazmiye Yahnioglu5,*

    CMC-Computers, Materials & Continua, Vol.55, No.2, pp. 359-380, 2018, DOI:10.3970/cmc.2018.00173

    Abstract The paper deals with a development of the discrete-analytical method for the solution of the dynamical problems of a hollow sphere with inhomogeneous initial stresses. The examinations are made with respect to the problem on the natural vibration of the hollow sphere the initial stresses in which is caused by internal and external uniformly distributed pressure. The initial stresses in the sphere are determined within the scope of the exact equations of elastostatics. It is assumed that after appearing this static initial stresses the sphere gets a dynamical excitation and mechanical behavior of the sphere caused by this excitation is… More >

  • Open Access

    ARTICLE

    Investigation of the Short-Time Photodissociation Dynamics of Furfural in S2 State by Resonance Raman and Quantum Chemistry Calculations

    Kemei Pei1,*, Yueben Dong1, Lei Chen1

    CMC-Computers, Materials & Continua, Vol.55, No.1, pp. 189-200, 2018, DOI:10.3970/cmc.2018.055.189

    Abstract Raman (resonance Raman, FT-Raman), IR and UV-visible spectroscopy and quantum chemistry calculations were used to investigate the photodissociation dynamics of furfural in S2 state. The resonance Raman(RR) spectra indicate that the photorelaxation dynamics for the S0→S2 excited state is predominantly along nine motions: C=O stretch ν5 (1667 cm-1), ring C=C antisymmetric stretch ν6 (1570 cm-1), ring C=C symmetric stretch ν7 (1472 cm-1), C2-O6-C5 symmetric stretch/C1-H8 rock in plane ν8 (1389 cm-1), C3-C4 stretch/ C1-H8 rock in plane ν9 (1370 cm-1), C5-O6 stretch in plane ν12 (1154 cm-1), ring breath ν13 (1077 cm-1), C3-C4 stretch ν14 (1020 cm-1), C3-C2-O6 symmetric stretch… More >

  • Open Access

    ARTICLE

    Early Stage of Oxidation on Titanium Surface by Reactive Molecular Dynamics Simulation

    Liang Yang1,2, Caizhuang Wang3,*, Shiwei Lin2,*, Yang Cao2, Xiaoheng Liu1

    CMC-Computers, Materials & Continua, Vol.55, No.1, pp. 177-188, 2018, DOI:10.3970/cmc.2018.055.177

    Abstract Understanding of metal oxidation is very critical to corrosion control, catalysis synthesis, and advanced materials engineering. Metal oxidation is a very complex phenomenon, with many different processes which are coupled and involved from the onset of reaction. In this work, the initial stage of oxidation on titanium surface was investigated in atomic scale by molecular dynamics (MD) simulations using a reactive force field (ReaxFF). We show that oxygen transport is the dominant process during the initial oxidation. Our simulation also demonstrate that a compressive stress was generated in the oxide layer which blocked the oxygen transport perpendicular to the Titanium… More >

  • Open Access

    ARTICLE

    Low Velocity Impact Response and Failure Assessment of Textile Reinforced Concrete Slabs

    Subashini I1, a, Smitha Gopinath2, *, Aahrthy R3, b

    CMC-Computers, Materials & Continua, Vol.53, No.4, pp. 291-306, 2017, DOI:10.3970/cmc.2017.053.291

    Abstract Present paper proposes a methodology by combining finite element method with smoothed particle hydrodynamics to simulate the response of textile reinforced concrete (TRC) slabs under low velocity impact loading. For the constitutive modelling in the finite element method, the concrete damaged plasticity model was employed to the cementitious binder of TRC and Von-Mises criterion was used for the textile reinforcement. Strain dependent smoothed particle hydrodynamics (SPH) was used to assess the damage and failure pattern of TRC slabs. Numerical simulation was carried out on TRC slabs with two different volume fraction of glass textile reinforcement to predict the energy absorption… More >

  • Open Access

    ARTICLE

    Influence of functionalization on the structural and mechanical properties of graphene

    L.S. Melro1,2, L.R. Jensen1

    CMC-Computers, Materials & Continua, Vol.53, No.2, pp. 109-127, 2017, DOI:10.3970/cmc.2017.053.111

    Abstract Molecular dynamics simulations were applied in order to calculate the Young’s modulus of graphene functionalized with carboxyl, hydroxyl, carbonyl, hydrogen, methyl, and ethyl groups. The influence of the grafting density with percentages of 3, 5, 7, and 10% and the type of distribution as a single cluster or several small clusters were also studied. The results show that the elastic modulus is dependent on the type of functional groups. The increasing coverage density also evidenced a decrease of the Young’s modulus, and the organization of functional groups as single cluster showed a lesser impact than for several small clusters. Furthermore,… More >

  • Open Access

    ARTICLE

    Molecule Dynamics Study on Heat Transfer at Gas-Nanoparticle Interface

    ZichunYang1, Gaohui Su1,2, Bin Chen1

    CMC-Computers, Materials & Continua, Vol.51, No.1, pp. 43-62, 2016, DOI:10.3970/cmc.2016.051.043

    Abstract The molecular dynamics (MD) simulations were used to understand the heat transfer process between the gas phase and the solid skeleton in the nanoporous silica aerogels. The amorphous silica nanoparticles were generated by the MD simulations and the energy accommodation coefficient (EAC) between the gases and the nanoparticles was calculated based on the results of the nonequilibrium molecular dynamics (NEMD) simulations. The apparent thermal conductivity (ATC) of the gases between the heat source and heat sink was also obtained. The effects of the temperature, the particle diameter and the molecule type on the EAC and the ATC were investigated. The… More >

  • Open Access

    ARTICLE

    Research and Improvement on the Accuracy of Discontinuous Smoothed Particle Hydrodynamics (DSPH) Method

    CMC-Computers, Materials & Continua, Vol.47, No.3, pp. 179-201, 2015, DOI:10.3970/cmc.2015.047.179

    Abstract Discontinuous smoothed particle hydrodynamics (DSPH) method based on traditional SPH method, which can be used to simulate discontinuous physics problems near interface or boundary. Previous works showed that DSPH method has a good application prospect [Xu et al, 2013], but further verification and improvement are demanded. In this paper, we investigate the accuracy of DSPH method by some numerical models. Moreover, to improve the accuracy of DSPH method, first order and second order multidimensional RDSPH methods are proposed by following the idea of restoring particle consistency in SPH (RSPH) method which has shown good results in the improvement of particle… More >

  • Open Access

    ARTICLE

    Molecular Dynamics Analysis of High-temperature Molten-salt Electrolytes in Thermal Batteries

    C. F. Chen1, H. Y. Li1, C. W. Hong1,2

    CMC-Computers, Materials & Continua, Vol.46, No.3, pp. 145-163, 2015, DOI:10.3970/cmc.2015.046.145

    Abstract The purpose of this research is to improve the discharge rate and to predict the melting point of high-temperature molten-salt electrolytes in thermal batteries. Using molecular dynamics (MD) simulation techniques, we tried to develop some novel ternary and quaternary molten electrolytes to replace conventional binary LiCl-KCl ones. The simulation results with greater ionic conductivity and lower melting point are consistent with experimental results reported by previous literatures. The MD results have found that the lithium ion mole fraction in the molten-salt electrolytes affects the ionic conductivity significantly. This paper demonstrates that MD simulation techniques are a useful tool to screen… More >

  • Open Access

    ARTICLE

    Dynamics of the Moving Load Acting on the Hydro-elastic System Consisting of the Elastic Plate, Compressible Viscous Fluid and RigidWall

    S.D. Akbarov1,2, M.I. Ismailov3

    CMC-Computers, Materials & Continua, Vol.45, No.2, pp. 75-106, 2015, DOI:10.3970/cmc.2015.045.075

    Abstract The subject of the paper is the study of the dynamics of the moving load acting on the hydro-elastic system consisting of the elastic plate, compressible viscous fluid and rigid wall. Under this study the motion of the plate is described by linear elastodynamics, and the motion of the compressible viscous fluid is described by the linearized Navier-Stokes equations. Numerical results are obtained for the case where the material of the plate is steel, but the fluid material is Glycerin. According to these results, corresponding conclusions related to the influence of the problem parameters, such as fluid viscosity, plate thickness,… More >

Displaying 561-570 on page 57 of 589. Per Page