Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (47)
  • Open Access

    ARTICLE

    Machine Learning for Detecting Blood Transfusion Needs Using Biosignals

    Hoon Ko1, Chul Park2, Wu Seong Kang3, Yunyoung Nam4, Dukyong Yoon5, Jinseok Lee1,*

    Computer Systems Science and Engineering, Vol.46, No.2, pp. 2369-2381, 2023, DOI:10.32604/csse.2023.035641

    Abstract Adequate oxygen in red blood cells carrying through the body to the heart and brain is important to maintain life. For those patients requiring blood, blood transfusion is a common procedure in which donated blood or blood components are given through an intravenous line. However, detecting the need for blood transfusion is time-consuming and sometimes not easily diagnosed, such as internal bleeding. This study considered physiological signals such as electrocardiogram (ECG), photoplethysmogram (PPG), blood pressure, oxygen saturation (SpO2), and respiration, and proposed the machine learning model to detect the need for blood transfusion accurately. For More >

  • Open Access

    ARTICLE

    TinyML-Based Classification in an ECG Monitoring Embedded System

    Eunchan Kim1, Jaehyuk Kim2, Juyoung Park3, Haneul Ko4, Yeunwoong Kyung5,*

    CMC-Computers, Materials & Continua, Vol.75, No.1, pp. 1751-1764, 2023, DOI:10.32604/cmc.2023.031663

    Abstract Recently, the development of the Internet of Things (IoT) has enabled continuous and personal electrocardiogram (ECG) monitoring. In the ECG monitoring system, classification plays an important role because it can select useful data (i.e., reduce the size of the dataset) and identify abnormal data that can be used to detect the clinical diagnosis and guide further treatment. Since the classification requires computing capability, the ECG data are usually delivered to the gateway or the server where the classification is performed based on its computing resource. However, real-time ECG data transmission continuously consumes battery and network… More >

  • Open Access

    ARTICLE

    Improved Bat Algorithm with Deep Learning-Based Biomedical ECG Signal Classification Model

    Marwa Obayya1, Nadhem NEMRI2, Lubna A. Alharbi3, Mohamed K. Nour4, Mrim M. Alnfiai5, Mohammed Abdullah Al-Hagery6, Nermin M. Salem7, Mesfer Al Duhayyim8,*

    CMC-Computers, Materials & Continua, Vol.74, No.2, pp. 3151-3166, 2023, DOI:10.32604/cmc.2023.032765

    Abstract With new developments experienced in Internet of Things (IoT), wearable, and sensing technology, the value of healthcare services has enhanced. This evolution has brought significant changes from conventional medicine-based healthcare to real-time observation-based healthcare. Bio-medical Electrocardiogram (ECG) signals are generally utilized in examination and diagnosis of Cardiovascular Diseases (CVDs) since it is quick and non-invasive in nature. Due to increasing number of patients in recent years, the classifier efficiency gets reduced due to high variances observed in ECG signal patterns obtained from patients. In such scenario computer-assisted automated diagnostic tools are important for classification of… More >

  • Open Access

    ARTICLE

    Secured ECG Signal Transmission Using Optimized EGC with Chaotic Neural Network in WBSN

    Ishani Mishra1,*, Sanjay Jain2, Vivek Maik3

    Computer Systems Science and Engineering, Vol.44, No.2, pp. 1109-1123, 2023, DOI:10.32604/csse.2023.025999

    Abstract In wireless body sensor network (WBSN), the set of electrocardiogram (ECG) data which is collected from sensor nodes and transmitted to the server remotely supports the experts to monitor the health of a patient. While transmitting these collected data some adversaries may capture and misuse it due to the compromise of security. So, the major aim of this work is to enhance secure transmission of ECG signal in WBSN. To attain this goal, we present Pity Beetle Swarm Optimization Algorithm (PBOA) based Elliptic Galois Cryptography (EGC) with Chaotic Neural Network. To optimize the key generation More >

  • Open Access

    ARTICLE

    A Novel Radial Basis Function Neural Network Approach for ECG Signal Classification

    S. Sathishkumar1,*, R. Devi Priya2

    Intelligent Automation & Soft Computing, Vol.35, No.1, pp. 129-148, 2023, DOI:10.32604/iasc.2023.023817

    Abstract Electrocardiogram (ECG) is a diagnostic method that helps to assess and record the electrical impulses of heart. The traditional methods in the extraction of ECG features is inneffective for avoiding the computational abstractions in the ECG signal. The cardiologist and medical specialist find numerous difficulties in the process of traditional approaches. The specified restrictions are eliminated in the proposed classifier. The fundamental aim of this work is to find the R-R interval. To analyze the blockage, different approaches are implemented, which make the computation as facile with high accuracy. The information are recovered from the… More >

  • Open Access

    ARTICLE

    Arrhythmia Prediction on Optimal Features Obtained from the ECG as Images

    Fuad A. M. Al-Yarimi*

    Computer Systems Science and Engineering, Vol.44, No.1, pp. 129-142, 2023, DOI:10.32604/csse.2023.024297

    Abstract A critical component of dealing with heart disease is real-time identification, which triggers rapid action. The main challenge of real-time identification is illustrated here by the rare occurrence of cardiac arrhythmias. Recent contributions to cardiac arrhythmia prediction using supervised learning approaches generally involve the use of demographic features (electronic health records), signal features (electrocardiogram features as signals), and temporal features. Since the signal of the electrical activity of the heartbeat is very sensitive to differences between high and low heartbeats, it is possible to detect some of the irregularities in the early stages of arrhythmia. More >

  • Open Access

    ARTICLE

    A Detailed Study on IoT Platform for ECG Monitoring Using Transfer Learning

    Md Saidul Islam*

    Journal on Internet of Things, Vol.4, No.3, pp. 127-140, 2022, DOI:10.32604/jiot.2022.037489

    Abstract Internet of Things (IoT) technologies used in health have the potential to address systemic difficulties by offering tools for cost reduction while improving diagnostic and treatment efficiency. Numerous works on this subject focus on clarifying the constructs and interfaces between various components of an IoT platform, such as knowledge generation via smart sensors collecting biosignals from the human body and processing them via data mining and, in recent times, deep neural networks offered to host on cloud computing architecture. These approaches are intended to assist healthcare professionals in their daily activities. In this comparative research, More >

  • Open Access

    ARTICLE

    ECG Heartbeat Classification Under Dataset Shift

    Zhiqiang He*

    Journal of Intelligent Medicine and Healthcare, Vol.1, No.2, pp. 79-89, 2022, DOI:10.32604/jimh.2022.036624

    Abstract Electrocardiogram (ECG) is widely used to detect arrhythmia. Atrial fibrillation, atrioventricular block, premature beats, etc. can all be diagnosed by ECG. When the distribution of training data and test data is inconsistent, the accuracy of the model will be affected. This phenomenon is called dataset shift. In the real-world heartbeat classification system, the heartbeat of the training set and test set often comes from patients of different ages and genders, so there are differences in the distribution of data sets. The main challenge in applying machine learning algorithms to clinical AI systems is dataset shift.… More >

  • Open Access

    ARTICLE

    Arrhythmia Detection and Classification by Using Modified Recurrent Neural Network

    Ajina Mohamed Ameer*, M. Victor Jose

    Intelligent Automation & Soft Computing, Vol.33, No.3, pp. 1349-1361, 2022, DOI:10.32604/iasc.2022.023924

    Abstract This paper presents a novel approach for arrhythmia detection and classification using modified recurrent neural network. In medicine and analytics, arrhythmia detections is a hot topic, specifically when it comes to cardiac identification. In the research methodology, there are 4 main steps. Acquisition and pre-processing of data, electrocardiogram (ECG) feature extraction utilizing QRS (Quick Response Systems) peak, and ECG signal classification using a Modified Recurrent Neural Network (Modified RNN) for arrhythmia diagnosis. The Massachusetts Institute of Technology-Beth Israel Hospital. (MIT-BIH) Arrhythmia database was used, as well as the image accuracy. Medium filter is used in… More >

  • Open Access

    ARTICLE

    Deep Learning Convolutional Neural Network for ECG Signal Classification Aggregated Using IoT

    S. Karthiga*, A. M. Abirami

    Computer Systems Science and Engineering, Vol.42, No.3, pp. 851-866, 2022, DOI:10.32604/csse.2022.021935

    Abstract Much attention has been given to the Internet of Things (IoT) by citizens, industries, governments, and universities for applications like smart buildings, environmental monitoring, health care and so on. With IoT, network connectivity is facilitated between smart devices from anyplace and anytime. IoT-based health monitoring systems are gaining popularity and acceptance for continuous monitoring and detect health abnormalities from the data collected. Electrocardiographic (ECG) signals are widely used for heart diseases detection. A novel method has been proposed in this work for ECG monitoring using IoT techniques. In this work, a two-stage approach is employed.… More >

Displaying 11-20 on page 2 of 47. Per Page