Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (46)
  • Open Access


    Deep Learning-Based ECG Classification for Arterial Fibrillation Detection

    Muhammad Sohail Irshad1,2,*, Tehreem Masood1,2, Arfan Jaffar1,2, Muhammad Rashid3, Sheeraz Akram1,2,4,*, Abeer Aljohani5

    CMC-Computers, Materials & Continua, Vol.79, No.3, pp. 4805-4824, 2024, DOI:10.32604/cmc.2024.050931

    Abstract The application of deep learning techniques in the medical field, specifically for Atrial Fibrillation (AFib) detection through Electrocardiogram (ECG) signals, has witnessed significant interest. Accurate and timely diagnosis increases the patient’s chances of recovery. However, issues like overfitting and inconsistent accuracy across datasets remain challenges. In a quest to address these challenges, a study presents two prominent deep learning architectures, ResNet-50 and DenseNet-121, to evaluate their effectiveness in AFib detection. The aim was to create a robust detection mechanism that consistently performs well. Metrics such as loss, accuracy, precision, sensitivity, and Area Under the Curve… More >

  • Open Access


    Arrhythmia Detection by Using Chaos Theory with Machine Learning Algorithms

    Maie Aboghazalah1,*, Passent El-kafrawy2, Abdelmoty M. Ahmed3, Rasha Elnemr5, Belgacem Bouallegue3, Ayman El-sayed4

    CMC-Computers, Materials & Continua, Vol.79, No.3, pp. 3855-3875, 2024, DOI:10.32604/cmc.2023.039936

    Abstract Heart monitoring improves life quality. Electrocardiograms (ECGs or EKGs) detect heart irregularities. Machine learning algorithms can create a few ECG diagnosis processing methods. The first method uses raw ECG and time-series data. The second method classifies the ECG by patient experience. The third technique translates ECG impulses into Q waves, R waves and S waves (QRS) features using richer information. Because ECG signals vary naturally between humans and activities, we will combine the three feature selection methods to improve classification accuracy and diagnosis. Classifications using all three approaches have not been examined till now. Several More >

  • Open Access


    Classification of Electrocardiogram Signals for Arrhythmia Detection Using Convolutional Neural Network

    Muhammad Aleem Raza1, Muhammad Anwar2, Kashif Nisar3, Ag. Asri Ag. Ibrahim3,*, Usman Ahmed Raza1, Sadiq Ali Khan4, Fahad Ahmad5

    CMC-Computers, Materials & Continua, Vol.77, No.3, pp. 3817-3834, 2023, DOI:10.32604/cmc.2023.032275

    Abstract With the help of computer-aided diagnostic systems, cardiovascular diseases can be identified timely manner to minimize the mortality rate of patients suffering from cardiac disease. However, the early diagnosis of cardiac arrhythmia is one of the most challenging tasks. The manual analysis of electrocardiogram (ECG) data with the help of the Holter monitor is challenging. Currently, the Convolutional Neural Network (CNN) is receiving considerable attention from researchers for automatically identifying ECG signals. This paper proposes a 9-layer-based CNN model to classify the ECG signals into five primary categories according to the American National Standards Institute More >

  • Open Access


    Attention-Based Residual Dense Shrinkage Network for ECG Denoising

    Dengyong Zhang1,2, Minzhi Yuan1,2, Feng Li1,2, Lebing Zhang3,*, Yanqiang Sun4, Yiming Ling5

    CMES-Computer Modeling in Engineering & Sciences, Vol.138, No.3, pp. 2809-2824, 2024, DOI:10.32604/cmes.2023.029181

    Abstract Electrocardiogram (ECG) signal is one of the noninvasive physiological measurement techniques commonly used in cardiac diagnosis. However, in real scenarios, the ECG signal is susceptible to various noise erosion, which affects the subsequent pathological analysis. Therefore, the effective removal of the noise from ECG signals has become a top priority in cardiac diagnostic research. Aiming at the problem of incomplete signal shape retention and low signal-to-noise ratio (SNR) after denoising, a novel ECG denoising network, named attention-based residual dense shrinkage network (ARDSN), is proposed in this paper. Firstly, the shallow ECG characteristics are extracted by More >

  • Open Access


    Convolution-Based Heterogeneous Activation Facility for Effective Machine Learning of ECG Signals

    Premanand S., Sathiya Narayanan*

    CMC-Computers, Materials & Continua, Vol.77, No.1, pp. 25-45, 2023, DOI:10.32604/cmc.2023.042590

    Abstract Machine Learning (ML) and Deep Learning (DL) technologies are revolutionizing the medical domain, especially with Electrocardiogram (ECG), by providing new tools and techniques for diagnosing, treating, and preventing diseases. However, DL architectures are computationally more demanding. In recent years, researchers have focused on combining the computationally less intensive portion of the DL architectures with ML approaches, say for example, combining the convolutional layer blocks of Convolution Neural Networks (CNNs) into ML algorithms such as Extreme Gradient Boosting (XGBoost) and K-Nearest Neighbor (KNN) resulting in CNN-XGBoost and CNN-KNN, respectively. However, these approaches are homogenous in the… More >

  • Open Access


    A Smart Heart Disease Diagnostic System Using Deep Vanilla LSTM

    Maryam Bukhari1, Sadaf Yasmin1, Sheneela Naz2, Mehr Yahya Durrani1, Mubashir Javaid3, Jihoon Moon4, Seungmin Rho5,*

    CMC-Computers, Materials & Continua, Vol.77, No.1, pp. 1251-1279, 2023, DOI:10.32604/cmc.2023.040329

    Abstract Effective smart healthcare frameworks contain novel and emerging solutions for remote disease diagnostics, which aid in the prevention of several diseases including heart-related abnormalities. In this context, regular monitoring of cardiac patients through smart healthcare systems based on Electrocardiogram (ECG) signals has the potential to save many lives. In existing studies, several heart disease diagnostic systems are proposed by employing different state-of-the-art methods, however, improving such methods is always an intriguing area of research. Hence, in this research, a smart healthcare system is proposed for the diagnosis of heart disease using ECG signals. The proposed… More >

  • Open Access


    A Health Monitoring System Using IoT-Based Android Mobile Application

    Madallah Alruwaili1,*, Muhammad Hameed Siddiqi1, Kamran Farid2, Mohammad Azad1, Saad Alanazi1, Asfandyar Khan2, Abdullah Khan2

    Computer Systems Science and Engineering, Vol.47, No.2, pp. 2293-2311, 2023, DOI:10.32604/csse.2023.040312

    Abstract Numerous types of research on healthcare monitoring systems have been conducted for calculating heart rate, ECG, nasal/oral airflow, temperature, light sensor, and fall detection sensor. Different researchers have done different work in the field of health monitoring with sensor networks. Different researchers used built-in apps, such as some used a small number of parameters, while some other studies used more than one microcontroller and used senders and receivers among the microcontrollers to communicate, and outdated tools for study development. While no efficient, cheap, and updated work is proposed in the field of sensor-based health monitoring… More >

  • Open Access


    Deep Learning Approach for Automatic Cardiovascular Disease Prediction Employing ECG Signals

    Muhammad Tayyeb1, Muhammad Umer1, Khaled Alnowaiser2, Saima Sadiq3, Ala’ Abdulmajid Eshmawi4, Rizwan Majeed5, Abdullah Mohamed6, Houbing Song7, Imran Ashraf8,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.137, No.2, pp. 1677-1694, 2023, DOI:10.32604/cmes.2023.026535

    Abstract Cardiovascular problems have become the predominant cause of death worldwide and a rise in the number of patients has been observed lately. Currently, electrocardiogram (ECG) data is analyzed by medical experts to determine the cardiac abnormality, which is time-consuming. In addition, the diagnosis requires experienced medical experts and is error-prone. However, automated identification of cardiovascular disease using ECGs is a challenging problem and state-of-the-art performance has been attained by complex deep learning architectures. This study proposes a simple multilayer perceptron (MLP) model for heart disease prediction to reduce computational complexity. ECG dataset containing averaged signals More >

  • Open Access


    A Detailed Study on IoT Platform for ECG Monitoring Using Transfer Learning

    Md Saidul Islam*

    Journal on Internet of Things, Vol.4, No.3, pp. 127-140, 2022, DOI:10.32604/jiot.2022.037489

    Abstract Internet of Things (IoT) technologies used in health have the potential to address systemic difficulties by offering tools for cost reduction while improving diagnostic and treatment efficiency. Numerous works on this subject focus on clarifying the constructs and interfaces between various components of an IoT platform, such as knowledge generation via smart sensors collecting biosignals from the human body and processing them via data mining and, in recent times, deep neural networks offered to host on cloud computing architecture. These approaches are intended to assist healthcare professionals in their daily activities. In this comparative research, More >

  • Open Access


    ECGAN: Translate Real World to Cartoon Style Using Enhanced Cartoon Generative Adversarial Network

    Yixin Tang*

    CMC-Computers, Materials & Continua, Vol.76, No.1, pp. 1195-1212, 2023, DOI:10.32604/cmc.2023.039182

    Abstract Visual illustration transformation from real-world to cartoon images is one of the famous and challenging tasks in computer vision. Image-to-image translation from real-world to cartoon domains poses issues such as a lack of paired training samples, lack of good image translation, low feature extraction from the previous domain images, and lack of high-quality image translation from the traditional generator algorithms. To solve the above-mentioned issues, paired independent model, high-quality dataset, Bayesian-based feature extractor, and an improved generator must be proposed. In this study, we propose a high-quality dataset to reduce the effect of paired training… More >

Displaying 1-10 on page 1 of 46. Per Page