Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (55)
  • Open Access

    ARTICLE

    Quantum Genetic Algorithm Based Ensemble Learning for Detection of Atrial Fibrillation Using ECG Signals

    Yazeed Alkhrijah1, Marwa Fahim2, Syed Muhammad Usman3, Qasim Mehmood3, Shehzad Khalid4,5,*, Mohamad A. Alawad1, Haya Aldossary6

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.2, pp. 2339-2355, 2025, DOI:10.32604/cmes.2025.071512 - 26 November 2025

    Abstract Atrial Fibrillation (AF) is a cardiac disorder characterized by irregular heart rhythms, typically diagnosed using Electrocardiogram (ECG) signals. In remote regions with limited healthcare personnel, automated AF detection is extremely important. Although recent studies have explored various machine learning and deep learning approaches, challenges such as signal noise and subtle variations between AF and other cardiac rhythms continue to hinder accurate classification. In this study, we propose a novel framework that integrates robust preprocessing, comprehensive feature extraction, and an ensemble classification strategy. In the first step, ECG signals are divided into equal-sized segments using a… More >

  • Open Access

    ARTICLE

    An Efficient CSP-PDW Approach for ECG Signal Compression and Reconstruction for IoT-Based Healthcare

    Hari Mohan Rai1,#, Chandra Mukherjee2,#, Joon Yoo1, Hanaa A. Abdallah3, Saurabh Agarwal4,*, Wooguil Pak4,*

    CMC-Computers, Materials & Continua, Vol.85, No.3, pp. 5723-5745, 2025, DOI:10.32604/cmc.2025.070391 - 23 October 2025

    Abstract A hybrid Compressed Sensing and Primal-Dual Wavelet (CSP-PDW) technique is proposed for the compression and reconstruction of ECG signals. The compression and reconstruction algorithms are implemented using four key concepts: Sparsifying Basis, Restricted Isometry Principle, Gaussian Random Matrix, and Convex Minimization. In addition to the conventional compression sensing reconstruction approach, wavelet-based processing is employed to enhance reconstruction efficiency. A mathematical model of the proposed algorithm is derived analytically to obtain the essential parameters of compression sensing, including the sparsifying basis, measurement matrix size, and number of iterations required for reconstructing the original signal and determining More >

  • Open Access

    ARTICLE

    Identification of Cardiac Risk Factors from ECG Signals Using Residual Neural Networks

    Divya Arivalagan, Vignesh Ochathevan*, Rubankumar Dhanasekaran

    Congenital Heart Disease, Vol.20, No.4, pp. 477-501, 2025, DOI:10.32604/chd.2025.070372 - 18 September 2025

    Abstract Background: The accurate identification of cardiac abnormalities is essential for proper diagnosis and effective treatment of cardiovascular diseases. Method: This work introduces an advanced methodology for detecting cardiac abnormalities and estimating electrocardiographic age (ECG Age) using sophisticated signal processing and deep learning techniques. This study looks at six main heart conditions found in 12-lead electrocardiogram (ECG) data. It addresses important issues like class imbalances, missing lead scenarios, and model generalizations. A modified residual neural network (ResNet) architecture was developed to enhance the detection of cardiac abnormalities. Results: The proposed ResNet demonst rated superior performance when compared with… More > Graphic Abstract

    Identification of Cardiac Risk Factors from ECG Signals Using Residual Neural Networks

  • Open Access

    ARTICLE

    Advanced ECG Signal Analysis for Cardiovascular Disease Diagnosis Using AVOA Optimized Ensembled Deep Transfer Learning Approaches

    Amrutanshu Panigrahi1, Abhilash Pati1, Bibhuprasad Sahu2, Ashis Kumar Pati3, Subrata Chowdhury4, Khursheed Aurangzeb5,*, Nadeem Javaid6, Sheraz Aslam7,*

    CMC-Computers, Materials & Continua, Vol.84, No.1, pp. 1633-1657, 2025, DOI:10.32604/cmc.2025.063562 - 09 June 2025

    Abstract The integration of IoT and Deep Learning (DL) has significantly advanced real-time health monitoring and predictive maintenance in prognostic and health management (PHM). Electrocardiograms (ECGs) are widely used for cardiovascular disease (CVD) diagnosis, but fluctuating signal patterns make classification challenging. Computer-assisted automated diagnostic tools that enhance ECG signal categorization using sophisticated algorithms and machine learning are helping healthcare practitioners manage greater patient populations. With this motivation, the study proposes a DL framework leveraging the PTB-XL ECG dataset to improve CVD diagnosis. Deep Transfer Learning (DTL) techniques extract features, followed by feature fusion to eliminate redundancy… More >

  • Open Access

    ARTICLE

    Neural Network Algorithm Based on LVQ for Myocardial Infarction Detection and Localization Using Multi-Lead ECG Data

    Kassymbek Ozhikenov1, Zhadyra Alimbayeva1,*, Chingiz Alimbayev1,2,*, Aiman Ozhikenova1, Yeldos Altay1

    CMC-Computers, Materials & Continua, Vol.82, No.3, pp. 5257-5284, 2025, DOI:10.32604/cmc.2025.061508 - 06 March 2025

    Abstract Myocardial infarction (MI) is one of the leading causes of death globally among cardiovascular diseases, necessitating modern and accurate diagnostics for cardiac patient conditions. Among the available functional diagnostic methods, electrocardiography (ECG) is particularly well-known for its ability to detect MI. However, confirming its accuracy—particularly in identifying the localization of myocardial damage—often presents challenges in practice. This study, therefore, proposes a new approach based on machine learning models for the analysis of 12-lead ECG data to accurately identify the localization of MI. In particular, the learning vector quantization (LVQ) algorithm was applied, considering the contribution… More >

  • Open Access

    ARTICLE

    An Arrhythmia Intelligent Recognition Method Based on a Multimodal Information and Spatio-Temporal Hybrid Neural Network Model

    Xinchao Han1,2, Aojun Zhang1,2, Runchuan Li1,2,*, Shengya Shen3, Di Zhang1,2, Bo Jin1,2, Longfei Mao1,2, Linqi Yang1,2, Shuqin Zhang1,2

    CMC-Computers, Materials & Continua, Vol.82, No.2, pp. 3443-3465, 2025, DOI:10.32604/cmc.2024.059403 - 17 February 2025

    Abstract Electrocardiogram (ECG) analysis is critical for detecting arrhythmias, but traditional methods struggle with large-scale Electrocardiogram data and rare arrhythmia events in imbalanced datasets. These methods fail to perform multi-perspective learning of temporal signals and Electrocardiogram images, nor can they fully extract the latent information within the data, falling short of the accuracy required by clinicians. Therefore, this paper proposes an innovative hybrid multimodal spatiotemporal neural network to address these challenges. The model employs a multimodal data augmentation framework integrating visual and signal-based features to enhance the classification performance of rare arrhythmias in imbalanced datasets. Additionally, More >

  • Open Access

    ARTICLE

    Automatic Extraction of Medical Latent Variables from ECG Signals Utilizing a Mutual Information-Based Technique and Capsular Neural Networks for Arrhythmia Detection

    Abbas Ali Hassan, Fardin Abdali-Mohammadi*

    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 971-983, 2024, DOI:10.32604/cmc.2024.053817 - 15 October 2024

    Abstract From a medical perspective, the 12 leads of the heart in an electrocardiogram (ECG) signal have functional dependencies with each other. Therefore, all these leads report different aspects of an arrhythmia. Their differences lie in the level of highlighting and displaying information about that arrhythmia. For example, although all leads show traces of atrial excitation, this function is more evident in lead II than in any other lead. In this article, a new model was proposed using ECG functional and structural dependencies between heart leads. In the prescreening stage, the ECG signals are segmented from… More >

  • Open Access

    ARTICLE

    Emotion Detection Using ECG Signals and a Lightweight CNN Model

    Amita U. Dessai*, Hassanali G. Virani

    Computer Systems Science and Engineering, Vol.48, No.5, pp. 1193-1211, 2024, DOI:10.32604/csse.2024.052710 - 13 September 2024

    Abstract Emotion recognition is a growing field that has numerous applications in smart healthcare systems and Human-Computer Interaction (HCI). However, physical methods of emotion recognition such as facial expressions, voice, and text data, do not always indicate true emotions, as users can falsify them. Among the physiological methods of emotion detection, Electrocardiogram (ECG) is a reliable and efficient way of detecting emotions. ECG-enabled smart bands have proven effective in collecting emotional data in uncontrolled environments. Researchers use deep machine learning techniques for emotion recognition using ECG signals, but there is a need to develop efficient models… More >

  • Open Access

    ARTICLE

    Ensemble Approach Combining Deep Residual Networks and BiGRU with Attention Mechanism for Classification of Heart Arrhythmias

    Batyrkhan Omarov1,2,*, Meirzhan Baikuvekov1, Daniyar Sultan1, Nurzhan Mukazhanov3, Madina Suleimenova2, Maigul Zhekambayeva3

    CMC-Computers, Materials & Continua, Vol.80, No.1, pp. 341-359, 2024, DOI:10.32604/cmc.2024.052437 - 18 July 2024

    Abstract This research introduces an innovative ensemble approach, combining Deep Residual Networks (ResNets) and Bidirectional Gated Recurrent Units (BiGRU), augmented with an Attention Mechanism, for the classification of heart arrhythmias. The escalating prevalence of cardiovascular diseases necessitates advanced diagnostic tools to enhance accuracy and efficiency. The model leverages the deep hierarchical feature extraction capabilities of ResNets, which are adept at identifying intricate patterns within electrocardiogram (ECG) data, while BiGRU layers capture the temporal dynamics essential for understanding the sequential nature of ECG signals. The integration of an Attention Mechanism refines the model’s focus on critical segments… More >

  • Open Access

    ARTICLE

    Deep Learning-Based ECG Classification for Arterial Fibrillation Detection

    Muhammad Sohail Irshad1,2,*, Tehreem Masood1,2, Arfan Jaffar1,2, Muhammad Rashid3, Sheeraz Akram1,2,4,*, Abeer Aljohani5

    CMC-Computers, Materials & Continua, Vol.79, No.3, pp. 4805-4824, 2024, DOI:10.32604/cmc.2024.050931 - 20 June 2024

    Abstract The application of deep learning techniques in the medical field, specifically for Atrial Fibrillation (AFib) detection through Electrocardiogram (ECG) signals, has witnessed significant interest. Accurate and timely diagnosis increases the patient’s chances of recovery. However, issues like overfitting and inconsistent accuracy across datasets remain challenges. In a quest to address these challenges, a study presents two prominent deep learning architectures, ResNet-50 and DenseNet-121, to evaluate their effectiveness in AFib detection. The aim was to create a robust detection mechanism that consistently performs well. Metrics such as loss, accuracy, precision, sensitivity, and Area Under the Curve… More >

Displaying 1-10 on page 1 of 55. Per Page