Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (15)
  • Open Access

    ARTICLE

    Optimized Compressive Sensing Based ECG Signal Compression and Reconstruction

    Ishani Mishra1,*, Sanjay Jain2

    Intelligent Automation & Soft Computing, Vol.33, No.1, pp. 415-428, 2022, DOI:10.32604/iasc.2022.022860

    Abstract In wireless body sensor network (WBSN), the set of electrocardiograms (ECG) data which is collected from sensor nodes and transmitted to the server remotely supports the experts to monitor the health of a patient. However, due to the size of the ECG data, the performance of the signal compression and reconstruction is degraded. For efficient wireless transmission of ECG data, compressive sensing (CS) frame work plays significant role recently in WBSN. So, this work focuses to present CS for ECG signal compression and reconstruction. Although CS minimizes mean square error (MSE), compression rate and reconstruction probability of the CS is… More >

  • Open Access

    ARTICLE

    Noisy ECG Signal Data Transformation to Augment Classification Accuracy

    Iqra Afzal1, Fiaz Majeed1, Muhammad Usman Ali2, Shahzada Khurram3, Akber Abid Gardezi4, Shafiq Ahmad5, Saad Aladyan5, Almetwally M. Mostafa6, Muhammad Shafiq7,*

    CMC-Computers, Materials & Continua, Vol.71, No.2, pp. 2191-2207, 2022, DOI:10.32604/cmc.2022.022711

    Abstract In this era of electronic health, healthcare data is very important because it contains information about human survival. In addition, the Internet of Things (IoT) revolution has redefined modern healthcare systems and management by providing continuous monitoring. In this case, the data related to the heart is more important and requires proper analysis. For the analysis of heart data, Electrocardiogram (ECG) is used. In this work, machine learning techniques, such as adaptive boosting (AdaBoost) is used for detecting normal sinus rhythm, atrial fibrillation (AF), and noise in ECG signals to improve the classification accuracy. The proposed model uses ECG signals… More >

  • Open Access

    ARTICLE

    Automated Deep Learning Based Cardiovascular Disease Diagnosis Using ECG Signals

    S. Karthik1, M. Santhosh1,*, M. S. Kavitha1, A. Christopher Paul2

    Computer Systems Science and Engineering, Vol.42, No.1, pp. 183-199, 2022, DOI:10.32604/csse.2022.021698

    Abstract Automated biomedical signal processing becomes an essential process to determine the indicators of diseased states. At the same time, latest developments of artificial intelligence (AI) techniques have the ability to manage and analyzing massive amounts of biomedical datasets results in clinical decisions and real time applications. They can be employed for medical imaging; however, the 1D biomedical signal recognition process is still needing to be improved. Electrocardiogram (ECG) is one of the widely used 1-dimensional biomedical signals, which is used to diagnose cardiovascular diseases. Computer assisted diagnostic models find it difficult to automatically classify the 1D ECG signals owing to… More >

  • Open Access

    REVIEW

    Review of Computational Techniques for the Analysis of Abnormal Patterns of ECG Signal Provoked by Cardiac Disease

    Revathi Jothiramalingam1, Anitha Jude2, Duraisamy Jude Hemanth2,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.128, No.3, pp. 875-906, 2021, DOI: 10.32604/cmes.2021.016485

    Abstract The 12-lead ECG aids in the diagnosis of myocardial infarction and is helpful in the prediction of cardiovascular disease complications. It does, though, have certain drawbacks. For other electrocardiographic anomalies such as Left Bundle Branch Block and Left Ventricular Hypertrophy syndrome, the ECG signal with Myocardial Infarction is difficult to interpret. These diseases cause variations in the ST portion of the ECG signal. It reduces the clarity of ECG signals, making it more difficult to diagnose these diseases. As a result, the specialist is misled into making an erroneous diagnosis by using the incorrect therapeutic technique. Based on these concepts,… More >

  • Open Access

    ARTICLE

    An Attention Based Neural Architecture for Arrhythmia Detection and Classification from ECG Signals

    Nimmala Mangathayaru1,*, Padmaja Rani2, Vinjamuri Janaki3, Kalyanapu Srinivas4, B. Mathura Bai1, G. Sai Mohan1, B. Lalith Bharadwaj1

    CMC-Computers, Materials & Continua, Vol.69, No.2, pp. 2425-2443, 2021, DOI:10.32604/cmc.2021.016534

    Abstract Arrhythmia is ubiquitous worldwide and cardiologists tend to provide solutions from the recent advancements in medicine. Detecting arrhythmia from ECG signals is considered a standard approach and hence, automating this process would aid the diagnosis by providing fast, cost-efficient, and accurate solutions at scale. This is executed by extracting the definite properties from the individual patterns collected from Electrocardiography (ECG) signals causing arrhythmia. In this era of applied intelligence, automated detection and diagnostic solutions are widely used for their spontaneous and robust solutions. In this research, our contributions are two-fold. Firstly, the Dual-Tree Complex Wavelet Transform (DT-CWT) method is implied… More >

Displaying 11-20 on page 2 of 15. Per Page