Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (21)
  • Open Access

    ARTICLE

    Quantum Genetic Algorithm Based Ensemble Learning for Detection of Atrial Fibrillation Using ECG Signals

    Yazeed Alkhrijah1, Marwa Fahim2, Syed Muhammad Usman3, Qasim Mehmood3, Shehzad Khalid4,5,*, Mohamad A. Alawad1, Haya Aldossary6

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.2, pp. 2339-2355, 2025, DOI:10.32604/cmes.2025.071512 - 26 November 2025

    Abstract Atrial Fibrillation (AF) is a cardiac disorder characterized by irregular heart rhythms, typically diagnosed using Electrocardiogram (ECG) signals. In remote regions with limited healthcare personnel, automated AF detection is extremely important. Although recent studies have explored various machine learning and deep learning approaches, challenges such as signal noise and subtle variations between AF and other cardiac rhythms continue to hinder accurate classification. In this study, we propose a novel framework that integrates robust preprocessing, comprehensive feature extraction, and an ensemble classification strategy. In the first step, ECG signals are divided into equal-sized segments using a… More >

  • Open Access

    ARTICLE

    An Efficient CSP-PDW Approach for ECG Signal Compression and Reconstruction for IoT-Based Healthcare

    Hari Mohan Rai1,#, Chandra Mukherjee2,#, Joon Yoo1, Hanaa A. Abdallah3, Saurabh Agarwal4,*, Wooguil Pak4,*

    CMC-Computers, Materials & Continua, Vol.85, No.3, pp. 5723-5745, 2025, DOI:10.32604/cmc.2025.070391 - 23 October 2025

    Abstract A hybrid Compressed Sensing and Primal-Dual Wavelet (CSP-PDW) technique is proposed for the compression and reconstruction of ECG signals. The compression and reconstruction algorithms are implemented using four key concepts: Sparsifying Basis, Restricted Isometry Principle, Gaussian Random Matrix, and Convex Minimization. In addition to the conventional compression sensing reconstruction approach, wavelet-based processing is employed to enhance reconstruction efficiency. A mathematical model of the proposed algorithm is derived analytically to obtain the essential parameters of compression sensing, including the sparsifying basis, measurement matrix size, and number of iterations required for reconstructing the original signal and determining More >

  • Open Access

    ARTICLE

    Identification of Cardiac Risk Factors from ECG Signals Using Residual Neural Networks

    Divya Arivalagan, Vignesh Ochathevan*, Rubankumar Dhanasekaran

    Congenital Heart Disease, Vol.20, No.4, pp. 477-501, 2025, DOI:10.32604/chd.2025.070372 - 18 September 2025

    Abstract Background: The accurate identification of cardiac abnormalities is essential for proper diagnosis and effective treatment of cardiovascular diseases. Method: This work introduces an advanced methodology for detecting cardiac abnormalities and estimating electrocardiographic age (ECG Age) using sophisticated signal processing and deep learning techniques. This study looks at six main heart conditions found in 12-lead electrocardiogram (ECG) data. It addresses important issues like class imbalances, missing lead scenarios, and model generalizations. A modified residual neural network (ResNet) architecture was developed to enhance the detection of cardiac abnormalities. Results: The proposed ResNet demonst rated superior performance when compared with… More > Graphic Abstract

    Identification of Cardiac Risk Factors from ECG Signals Using Residual Neural Networks

  • Open Access

    ARTICLE

    Advanced ECG Signal Analysis for Cardiovascular Disease Diagnosis Using AVOA Optimized Ensembled Deep Transfer Learning Approaches

    Amrutanshu Panigrahi1, Abhilash Pati1, Bibhuprasad Sahu2, Ashis Kumar Pati3, Subrata Chowdhury4, Khursheed Aurangzeb5,*, Nadeem Javaid6, Sheraz Aslam7,*

    CMC-Computers, Materials & Continua, Vol.84, No.1, pp. 1633-1657, 2025, DOI:10.32604/cmc.2025.063562 - 09 June 2025

    Abstract The integration of IoT and Deep Learning (DL) has significantly advanced real-time health monitoring and predictive maintenance in prognostic and health management (PHM). Electrocardiograms (ECGs) are widely used for cardiovascular disease (CVD) diagnosis, but fluctuating signal patterns make classification challenging. Computer-assisted automated diagnostic tools that enhance ECG signal categorization using sophisticated algorithms and machine learning are helping healthcare practitioners manage greater patient populations. With this motivation, the study proposes a DL framework leveraging the PTB-XL ECG dataset to improve CVD diagnosis. Deep Transfer Learning (DTL) techniques extract features, followed by feature fusion to eliminate redundancy… More >

  • Open Access

    ARTICLE

    Automatic Extraction of Medical Latent Variables from ECG Signals Utilizing a Mutual Information-Based Technique and Capsular Neural Networks for Arrhythmia Detection

    Abbas Ali Hassan, Fardin Abdali-Mohammadi*

    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 971-983, 2024, DOI:10.32604/cmc.2024.053817 - 15 October 2024

    Abstract From a medical perspective, the 12 leads of the heart in an electrocardiogram (ECG) signal have functional dependencies with each other. Therefore, all these leads report different aspects of an arrhythmia. Their differences lie in the level of highlighting and displaying information about that arrhythmia. For example, although all leads show traces of atrial excitation, this function is more evident in lead II than in any other lead. In this article, a new model was proposed using ECG functional and structural dependencies between heart leads. In the prescreening stage, the ECG signals are segmented from… More >

  • Open Access

    ARTICLE

    Emotion Detection Using ECG Signals and a Lightweight CNN Model

    Amita U. Dessai*, Hassanali G. Virani

    Computer Systems Science and Engineering, Vol.48, No.5, pp. 1193-1211, 2024, DOI:10.32604/csse.2024.052710 - 13 September 2024

    Abstract Emotion recognition is a growing field that has numerous applications in smart healthcare systems and Human-Computer Interaction (HCI). However, physical methods of emotion recognition such as facial expressions, voice, and text data, do not always indicate true emotions, as users can falsify them. Among the physiological methods of emotion detection, Electrocardiogram (ECG) is a reliable and efficient way of detecting emotions. ECG-enabled smart bands have proven effective in collecting emotional data in uncontrolled environments. Researchers use deep machine learning techniques for emotion recognition using ECG signals, but there is a need to develop efficient models… More >

  • Open Access

    ARTICLE

    Classification of Electrocardiogram Signals for Arrhythmia Detection Using Convolutional Neural Network

    Muhammad Aleem Raza1, Muhammad Anwar2, Kashif Nisar3, Ag. Asri Ag. Ibrahim3,*, Usman Ahmed Raza1, Sadiq Ali Khan4, Fahad Ahmad5

    CMC-Computers, Materials & Continua, Vol.77, No.3, pp. 3817-3834, 2023, DOI:10.32604/cmc.2023.032275 - 26 December 2023

    Abstract With the help of computer-aided diagnostic systems, cardiovascular diseases can be identified timely manner to minimize the mortality rate of patients suffering from cardiac disease. However, the early diagnosis of cardiac arrhythmia is one of the most challenging tasks. The manual analysis of electrocardiogram (ECG) data with the help of the Holter monitor is challenging. Currently, the Convolutional Neural Network (CNN) is receiving considerable attention from researchers for automatically identifying ECG signals. This paper proposes a 9-layer-based CNN model to classify the ECG signals into five primary categories according to the American National Standards Institute More >

  • Open Access

    ARTICLE

    Convolution-Based Heterogeneous Activation Facility for Effective Machine Learning of ECG Signals

    Premanand S., Sathiya Narayanan*

    CMC-Computers, Materials & Continua, Vol.77, No.1, pp. 25-45, 2023, DOI:10.32604/cmc.2023.042590 - 31 October 2023

    Abstract Machine Learning (ML) and Deep Learning (DL) technologies are revolutionizing the medical domain, especially with Electrocardiogram (ECG), by providing new tools and techniques for diagnosing, treating, and preventing diseases. However, DL architectures are computationally more demanding. In recent years, researchers have focused on combining the computationally less intensive portion of the DL architectures with ML approaches, say for example, combining the convolutional layer blocks of Convolution Neural Networks (CNNs) into ML algorithms such as Extreme Gradient Boosting (XGBoost) and K-Nearest Neighbor (KNN) resulting in CNN-XGBoost and CNN-KNN, respectively. However, these approaches are homogenous in the… More >

  • Open Access

    ARTICLE

    A Smart Heart Disease Diagnostic System Using Deep Vanilla LSTM

    Maryam Bukhari1, Sadaf Yasmin1, Sheneela Naz2, Mehr Yahya Durrani1, Mubashir Javaid3, Jihoon Moon4, Seungmin Rho5,*

    CMC-Computers, Materials & Continua, Vol.77, No.1, pp. 1251-1279, 2023, DOI:10.32604/cmc.2023.040329 - 31 October 2023

    Abstract Effective smart healthcare frameworks contain novel and emerging solutions for remote disease diagnostics, which aid in the prevention of several diseases including heart-related abnormalities. In this context, regular monitoring of cardiac patients through smart healthcare systems based on Electrocardiogram (ECG) signals has the potential to save many lives. In existing studies, several heart disease diagnostic systems are proposed by employing different state-of-the-art methods, however, improving such methods is always an intriguing area of research. Hence, in this research, a smart healthcare system is proposed for the diagnosis of heart disease using ECG signals. The proposed… More >

  • Open Access

    ARTICLE

    Deep Learning Approach for Automatic Cardiovascular Disease Prediction Employing ECG Signals

    Muhammad Tayyeb1, Muhammad Umer1, Khaled Alnowaiser2, Saima Sadiq3, Ala’ Abdulmajid Eshmawi4, Rizwan Majeed5, Abdullah Mohamed6, Houbing Song7, Imran Ashraf8,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.137, No.2, pp. 1677-1694, 2023, DOI:10.32604/cmes.2023.026535 - 26 June 2023

    Abstract Cardiovascular problems have become the predominant cause of death worldwide and a rise in the number of patients has been observed lately. Currently, electrocardiogram (ECG) data is analyzed by medical experts to determine the cardiac abnormality, which is time-consuming. In addition, the diagnosis requires experienced medical experts and is error-prone. However, automated identification of cardiovascular disease using ECGs is a challenging problem and state-of-the-art performance has been attained by complex deep learning architectures. This study proposes a simple multilayer perceptron (MLP) model for heart disease prediction to reduce computational complexity. ECG dataset containing averaged signals More >

Displaying 1-10 on page 1 of 21. Per Page