Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (13,190)
  • Open Access

    ARTICLE

    Mitigating Carbon Emissions: A Comprehensive Analysis of Transitioning to Hydrogen-Powered Plants in Japan’s Energy Landscape Post-Fukushima

    Nugroho Agung Pambudi1,2,4,*, Andrew Chapman, Alfan Sarifudin1,3, Desita Kamila Ulfa4, Iksan Riva Nanda5

    Energy Engineering, Vol.121, No.5, pp. 1143-1159, 2024, DOI:10.32604/ee.2024.047555

    Abstract One of the impacts of the Fukushima disaster was the shutdown of all nuclear power plants in Japan, reaching zero production in 2015. In response, the country started importing more fossil energy including coal, oil, and natural gas to fill the energy gap. However, this led to a significant increase in carbon emissions, hindering the efforts to reduce its carbon footprint. In the current situation, Japan is actively working to balance its energy requirements with environmental considerations, including the utilization of hydrogen fuel. Therefore, this paper aims to explore the feasibility and implications of using hydrogen power plants as a… More >

  • Open Access

    ARTICLE

    A Study of the Effect of the Miller Cycle on the Combustion of a Supercharged Marine Diesel Engine

    Lingjie Zhao, Cong Li*

    Energy Engineering, Vol.121, No.5, pp. 1363-1380, 2024, DOI:10.32604/ee.2024.046918

    Abstract The Miller cycle is a program that effectively reduces NOx emissions from marine diesel engines by lowering the maximum combustion temperature in the cylinder, thereby reducing NOx emissions. To effectively investigate the impact of Miller cycle optimum combustion performance and emission capability under high load conditions, this study will perform a one-dimensional simulation of the performance of a marine diesel engine, as well as a three-dimensional simulation of the combustion in the cylinder. A 6-cylinder four-stroke single-stage supercharged diesel engine is taken as the research object. The chassis dynamometer and other related equipment are used to build the test system,… More >

  • Open Access

    ARTICLE

    A Compact UHF Antenna Based on Hilbert Fractal Elements and a Serpentine Arrangement for Detecting Partial Discharge

    Xiang Lin1,*, Jian Fang1, Ming Zhang1, Kuang Yin1, Yan Tian1, Yingfei Guo2, Qianggang Wang2

    Energy Engineering, Vol.121, No.5, pp. 1127-1141, 2024, DOI:10.32604/ee.2024.046861

    Abstract Efforts to protect electric power systems from faults have commonly relied on the use of ultra-high frequency (UHF) antennas for detecting partial discharge (PD) as a common precursor to faults. However, the effectiveness of existing UHF antennas suffers from a number of challenges such as limited bandwidth, relatively large physical size, and low detection sensitivity. The present study addresses these issues by proposing a compact microstrip patch antenna with fixed dimensions of 100 mm × 100 mm × 1.6 mm. The results of computations yield an optimized antenna design consisting of 2nd-order Hilbert fractal units positioned within a four-layer serpentine… More > Graphic Abstract

    A Compact UHF Antenna Based on Hilbert Fractal Elements and a Serpentine Arrangement for Detecting Partial Discharge

  • Open Access

    ARTICLE

    Research on Scheduling Strategy of Flexible Interconnection Distribution Network Considering Distributed Photovoltaic and Hydrogen Energy Storage

    Yang Li1,2, Jianjun Zhao2, Xiaolong Yang2, He Wang1,*, Yuyan Wang1

    Energy Engineering, Vol.121, No.5, pp. 1263-1289, 2024, DOI:10.32604/ee.2024.046784

    Abstract Distributed photovoltaic (PV) is one of the important power sources for building a new power system with new energy as the main body. The rapid development of distributed PV has brought new challenges to the operation of distribution networks. In order to improve the absorption ability of large-scale distributed PV access to the distribution network, the AC/DC hybrid distribution network is constructed based on flexible interconnection technology, and a coordinated scheduling strategy model of hydrogen energy storage (HS) and distributed PV is established. Firstly, the mathematical model of distributed PV and HS system is established, and a comprehensive energy storage… More >

  • Open Access

    ARTICLE

    Weather-Driven Solar Power Forecasting Using D-Informer: Enhancing Predictions with Climate Variables

    Chenglian Ma1, Rui Han1, Zhao An2,*, Tianyu Hu2, Meizhu Jin2

    Energy Engineering, Vol.121, No.5, pp. 1245-1261, 2024, DOI:10.32604/ee.2024.046644

    Abstract Precise forecasting of solar power is crucial for the development of sustainable energy systems. Contemporary forecasting approaches often fail to adequately consider the crucial role of weather factors in photovoltaic (PV) power generation and encounter issues such as gradient explosion or disappearance when dealing with extensive time-series data. To overcome these challenges, this research presents a cutting-edge, multi-stage forecasting method called D-Informer. This method skillfully merges the differential transformation algorithm with the Informer model, leveraging a detailed array of meteorological variables and historical PV power generation records. The D-Informer model exhibits remarkable superiority over competing models across multiple performance metrics,… More > Graphic Abstract

    Weather-Driven Solar Power Forecasting Using D-Informer: Enhancing Predictions with Climate Variables

  • Open Access

    ARTICLE

    Deep-Ensemble Learning Method for Solar Resource Assessment of Complex Terrain Landscapes

    Lifeng Li1, Zaimin Yang1, Xiongping Yang1, Jiaming Li2, Qianyufan Zhou3,*, Ping Yang3

    Energy Engineering, Vol.121, No.5, pp. 1329-1346, 2024, DOI:10.32604/ee.2023.046447

    Abstract As the global demand for renewable energy grows, solar energy is gaining attention as a clean, sustainable energy source. Accurate assessment of solar energy resources is crucial for the siting and design of photovoltaic power plants. This study proposes an integrated deep learning-based photovoltaic resource assessment method. Ensemble learning and deep learning methods are fused for photovoltaic resource assessment for the first time. The proposed method combines the random forest, gated recurrent unit, and long short-term memory to effectively improve the accuracy and reliability of photovoltaic resource assessment. The proposed method has strong adaptability and high accuracy even in the… More >

  • Open Access

    ARTICLE

    A Wind Power Prediction Framework for Distributed Power Grids

    Bin Chen1, Ziyang Li1, Shipeng Li1, Qingzhou Zhao1, Xingdou Liu2,*

    Energy Engineering, Vol.121, No.5, pp. 1291-1307, 2024, DOI:10.32604/ee.2024.046374

    Abstract To reduce carbon emissions, clean energy is being integrated into the power system. Wind power is connected to the grid in a distributed form, but its high variability poses a challenge to grid stability. This article combines wind turbine monitoring data with numerical weather prediction (NWP) data to create a suitable wind power prediction framework for distributed grids. First, high-precision NWP of the turbine range is achieved using weather research and forecasting models (WRF), and Kriging interpolation locates predicted meteorological data at the turbine site. Then, a preliminary predicted power series is obtained based on the fan’s wind speed-power conversion… More >

  • Open Access

    ARTICLE

    Research on Operation Optimization of Energy Storage Power Station and Integrated Energy Microgrid Alliance Based on Stackelberg Game

    Yu Zhang*, Lianmin Li, Zhongxiang Liu, Yuhu Wu

    Energy Engineering, Vol.121, No.5, pp. 1209-1221, 2024, DOI:10.32604/ee.2024.046141

    Abstract With the development of renewable energy technologies such as photovoltaics and wind power, it has become a research hotspot to improve the consumption rate of new energy and reduce energy costs through the deployment of energy storage. To solve the problem of the interests of different subjects in the operation of the energy storage power stations (ESS) and the integrated energy multi-microgrid alliance (IEMA), this paper proposes the optimization operation method of the energy storage power station and the IEMA based on the Stackelberg game. In the upper layer, ESS optimizes charging and discharging decisions through a dynamic pricing mechanism.… More > Graphic Abstract

    Research on Operation Optimization of Energy Storage Power Station and Integrated Energy Microgrid Alliance Based on Stackelberg Game

  • Open Access

    ARTICLE

    A Novel Defender-Attacker-Defender Model for Resilient Distributed Generator Planning with Network Reconfiguration and Demand Response

    Wenlu Ji*, Teng Tu, Nan Ma

    Energy Engineering, Vol.121, No.5, pp. 1223-1243, 2024, DOI:10.32604/ee.2024.046112

    Abstract To improve the resilience of a distribution system against extreme weather, a fuel-based distributed generator (DG) allocation model is proposed in this study. In this model, the DGs are placed at the planning stage. When an extreme event occurs, the controllable generators form temporary microgrids (MGs) to restore the load maximally. Simultaneously, a demand response program (DRP) mitigates the imbalance between the power supply and demand during extreme events. To cope with the fault uncertainty, a robust optimization (RO) method is applied to reduce the long-term investment and short-term operation costs. The optimization is formulated as a tri-level defender-attacker-defender (DAD)… More >

  • Open Access

    ARTICLE

    Research on Quantitative Identification of Three-Dimensional Connectivity of Fractured-Vuggy Reservoirs

    Xingliang Deng1, Peng Cao2,*, Yintao Zhang1, Yuhui Zhou3, Xiao Luo1, Liang Wang3

    Energy Engineering, Vol.121, No.5, pp. 1195-1207, 2024, DOI:10.32604/ee.2023.045870

    Abstract The fractured-vuggy carbonate oil resources in the western basin of China are extremely rich. The connectivity of carbonate reservoirs is complex, and there is still a lack of clear understanding of the development and topological structure of the pore space in fractured-vuggy reservoirs. Thus, effective prediction of fractured-vuggy reservoirs is difficult. In view of this, this work employs adaptive point cloud technology to reproduce the shape and capture the characteristics of a fractured-vuggy reservoir. To identify the complex connectivity among pores, fractures, and vugs, a simplified one-dimensional connectivity model is established by using the meshless connection element method (CEM). Considering… More >

Displaying 1-10 on page 1 of 13190. Per Page