Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (13,283)
  • Open Access

    ARTICLE

    Curve Classification Based on Mean-Variance Feature Weighting and Its Application

    Zewen Zhang1, Sheng Zhou1, Chunzheng Cao1,2,*

    CMC-Computers, Materials & Continua, Vol.79, No.2, pp. 2465-2480, 2024, DOI:10.32604/cmc.2024.049605

    Abstract The classification of functional data has drawn much attention in recent years. The main challenge is representing infinite-dimensional functional data by finite-dimensional features while utilizing those features to achieve better classification accuracy. In this paper, we propose a mean-variance-based (MV) feature weighting method for classifying functional data or functional curves. In the feature extraction stage, each sample curve is approximated by B-splines to transfer features to the coefficients of the spline basis. After that, a feature weighting approach based on statistical principles is introduced by comprehensively considering the between-class differences and within-class variations of the coefficients. We also introduce a… More >

  • Open Access

    ARTICLE

    CMAES-WFD: Adversarial Website Fingerprinting Defense Based on Covariance Matrix Adaptation Evolution Strategy

    Di Wang, Yuefei Zhu, Jinlong Fei*, Maohua Guo

    CMC-Computers, Materials & Continua, Vol.79, No.2, pp. 2253-2276, 2024, DOI:10.32604/cmc.2024.049504

    Abstract Website fingerprinting, also known as WF, is a traffic analysis attack that enables local eavesdroppers to infer a user’s browsing destination, even when using the Tor anonymity network. While advanced attacks based on deep neural network (DNN) can perform feature engineering and attain accuracy rates of over 98%, research has demonstrated that DNN is vulnerable to adversarial samples. As a result, many researchers have explored using adversarial samples as a defense mechanism against DNN-based WF attacks and have achieved considerable success. However, these methods suffer from high bandwidth overhead or require access to the target model, which is unrealistic. This… More >

  • Open Access

    ARTICLE

    A Cooperated Imperialist Competitive Algorithm for Unrelated Parallel Batch Machine Scheduling Problem

    Deming Lei*, Heen Li

    CMC-Computers, Materials & Continua, Vol.79, No.2, pp. 1855-1874, 2024, DOI:10.32604/cmc.2024.049480

    Abstract This study focuses on the scheduling problem of unrelated parallel batch processing machines (BPM) with release times, a scenario derived from the moulding process in a foundry. In this process, a batch is initially formed, placed in a sandbox, and then the sandbox is positioned on a BPM for moulding. The complexity of the scheduling problem increases due to the consideration of BPM capacity and sandbox volume. To minimize the makespan, a new cooperated imperialist competitive algorithm (CICA) is introduced. In CICA, the number of empires is not a parameter, and four empires are maintained throughout the search process. Two… More >

  • Open Access

    ARTICLE

    Low-Brightness Object Recognition Based on Deep Learning

    Shu-Yin Chiang*, Ting-Yu Lin

    CMC-Computers, Materials & Continua, Vol.79, No.2, pp. 1757-1773, 2024, DOI:10.32604/cmc.2024.049477

    Abstract This research focuses on addressing the challenges associated with image detection in low-light environments, particularly by applying artificial intelligence techniques to machine vision and object recognition systems. The primary goal is to tackle issues related to recognizing objects with low brightness levels. In this study, the Intel RealSense Lidar Camera L515 is used to simultaneously capture color information and 16-bit depth information images. The detection scenarios are categorized into normal brightness and low brightness situations. When the system determines a normal brightness environment, normal brightness images are recognized using deep learning methods. In low-brightness situations, three methods are proposed for… More >

  • Open Access

    ARTICLE

    Model Agnostic Meta-Learning (MAML)-Based Ensemble Model for Accurate Detection of Wheat Diseases Using Vision Transformer and Graph Neural Networks

    Yasir Maqsood1, Syed Muhammad Usman1,*, Musaed Alhussein2, Khursheed Aurangzeb2,*, Shehzad Khalid3, Muhammad Zubair4

    CMC-Computers, Materials & Continua, Vol.79, No.2, pp. 2795-2811, 2024, DOI:10.32604/cmc.2024.049410

    Abstract Wheat is a critical crop, extensively consumed worldwide, and its production enhancement is essential to meet escalating demand. The presence of diseases like stem rust, leaf rust, yellow rust, and tan spot significantly diminishes wheat yield, making the early and precise identification of these diseases vital for effective disease management. With advancements in deep learning algorithms, researchers have proposed many methods for the automated detection of disease pathogens; however, accurately detecting multiple disease pathogens simultaneously remains a challenge. This challenge arises due to the scarcity of RGB images for multiple diseases, class imbalance in existing public datasets, and the difficulty… More >

  • Open Access

    ARTICLE

    Hyperspectral Image Based Interpretable Feature Clustering Algorithm

    Yaming Kang1,*, Peishun Ye1, Yuxiu Bai1, Shi Qiu2

    CMC-Computers, Materials & Continua, Vol.79, No.2, pp. 2151-2168, 2024, DOI:10.32604/cmc.2024.049360

    Abstract Hyperspectral imagery encompasses spectral and spatial dimensions, reflecting the material properties of objects. Its application proves crucial in search and rescue, concealed target identification, and crop growth analysis. Clustering is an important method of hyperspectral analysis. The vast data volume of hyperspectral imagery, coupled with redundant information, poses significant challenges in swiftly and accurately extracting features for subsequent analysis. The current hyperspectral feature clustering methods, which are mostly studied from space or spectrum, do not have strong interpretability, resulting in poor comprehensibility of the algorithm. So, this research introduces a feature clustering algorithm for hyperspectral imagery from an interpretability perspective.… More >

  • Open Access

    ARTICLE

    Blood Pressure Estimation with Phonocardiogram on CNN-Based Approach

    Kasidit Kokkhunthod1, Khomdet Phapatanaburi2, Wongsathon Pathonsuwan1, Talit Jumphoo1, Patikorn Anchuen3, Porntip Nimkuntod4, Monthippa Uthansakul1, Peerapong Uthansakul1,*

    CMC-Computers, Materials & Continua, Vol.79, No.2, pp. 1775-1794, 2024, DOI:10.32604/cmc.2024.049276

    Abstract Monitoring blood pressure is a critical aspect of safeguarding an individual’s health, as early detection of abnormal blood pressure levels facilitates timely medical intervention, ultimately leading to a reduction in mortality rates associated with cardiovascular diseases. Consequently, the development of a robust and continuous blood pressure monitoring system holds paramount significance. In the context of this research paper, we introduce an innovative deep learning regression model that harnesses phonocardiogram (PCG) data to achieve precise blood pressure estimation. Our novel approach incorporates a convolutional neural network (CNN)-based regression model, which not only enhances its adaptability to spatial variations but also empowers… More >

  • Open Access

    ARTICLE

    Real-Time Prediction of Urban Traffic Problems Based on Artificial Intelligence-Enhanced Mobile Ad Hoc Networks (MANETS)

    Ahmed Alhussen1, Arshiya S. Ansari2,*

    CMC-Computers, Materials & Continua, Vol.79, No.2, pp. 1903-1923, 2024, DOI:10.32604/cmc.2024.049260

    Abstract Traffic in today’s cities is a serious problem that increases travel times, negatively affects the environment, and drains financial resources. This study presents an Artificial Intelligence (AI) augmented Mobile Ad Hoc Networks (MANETs) based real-time prediction paradigm for urban traffic challenges. MANETs are wireless networks that are based on mobile devices and may self-organize. The distributed nature of MANETs and the power of AI approaches are leveraged in this framework to provide reliable and timely traffic congestion forecasts. This study suggests a unique Chaotic Spatial Fuzzy Polynomial Neural Network (CSFPNN) technique to assess real-time data acquired from various sources within… More >

  • Open Access

    ARTICLE

    Predicting Age and Gender in Author Profiling: A Multi-Feature Exploration

    Aiman1, Muhammad Arshad1,*, Bilal Khan1, Sadique Ahmad2,*, Muhammad Asim2,3

    CMC-Computers, Materials & Continua, Vol.79, No.2, pp. 3333-3353, 2024, DOI:10.32604/cmc.2024.049254

    Abstract Author Profiling (AP) is a subsection of digital forensics that focuses on the detection of the author’s personal information, such as age, gender, occupation, and education, based on various linguistic features, e.g., stylistic, semantic, and syntactic. The importance of AP lies in various fields, including forensics, security, medicine, and marketing. In previous studies, many works have been done using different languages, e.g., English, Arabic, French, etc. However, the research on Roman Urdu is not up to the mark. Hence, this study focuses on detecting the author’s age and gender based on Roman Urdu text messages. The dataset used in this… More >

  • Open Access

    ARTICLE

    L-Smooth SVM with Distributed Adaptive Proximal Stochastic Gradient Descent with Momentum for Fast Brain Tumor Detection

    Chuandong Qin1,2, Yu Cao1,*, Liqun Meng1

    CMC-Computers, Materials & Continua, Vol.79, No.2, pp. 1975-1994, 2024, DOI:10.32604/cmc.2024.049228

    Abstract Brain tumors come in various types, each with distinct characteristics and treatment approaches, making manual detection a time-consuming and potentially ambiguous process. Brain tumor detection is a valuable tool for gaining a deeper understanding of tumors and improving treatment outcomes. Machine learning models have become key players in automating brain tumor detection. Gradient descent methods are the mainstream algorithms for solving machine learning models. In this paper, we propose a novel distributed proximal stochastic gradient descent approach to solve the L-Smooth Support Vector Machine (SVM) classifier for brain tumor detection. Firstly, the smooth hinge loss is introduced to be used… More >

Displaying 41-50 on page 5 of 13283. Per Page