Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (45)
  • Open Access

    ARTICLE

    Adaptive Signal Enhancement Unit for EEG Analysis in Remote Patient Care Monitoring Systems

    Ch. Srinivas1,*, K. Chandrabhushana Rao2

    CMC-Computers, Materials & Continua, Vol.67, No.2, pp. 1801-1817, 2021, DOI:10.32604/cmc.2021.014981 - 05 February 2021

    Abstract In this paper we propose an efficient process of physiological artifact elimination methodology from brain waves (BW), which are also commonly known as electroencephalogram (EEG) signal. In a clinical environment during the acquisition of BW several artifacts contaminates the actual BW component. This leads to inaccurate and ambiguous diagnosis. As the statistical nature of the EEG signal is more non-stationery, adaptive filtering is the more promising method for the process of artifact elimination. In clinical conditions, the conventional adaptive techniques require many numbers of computational operations and leads to data samples overlapping and instability of… More >

  • Open Access

    ARTICLE

    Quantum Computational Techniques for Prediction of Cognitive State of Human Mind from EEG Signals

    Seth Aishwarya1, Vaishnav Abeer1,*, Babu B. Sathish1, K. N. Subramanya2

    Journal of Quantum Computing, Vol.2, No.4, pp. 157-170, 2020, DOI:10.32604/jqc.2020.015018 - 07 January 2021

    Abstract The utilization of quantum states for the representation of information and the advances in machine learning is considered as an efficient way of modeling the working of complex systems. The states of mind or judgment outcomes are highly complex phenomena that happen inside the human body. Decoding these states is significant for improving the quality of technology and providing an impetus to scientific research aimed at understanding the functioning of the human mind. One of the key advantages of quantum wave-functions over conventional classical models is the existence of configurable hidden variables, which provide… More >

  • Open Access

    ARTICLE

    Picture-Induced EEG Signal Classification Based on CVC Emotion Recognition System

    Huiping Jiang1, *, Zequn Wang1, Rui Jiao1, Shan Jiang2

    CMC-Computers, Materials & Continua, Vol.65, No.2, pp. 1453-1465, 2020, DOI:10.32604/cmc.2020.011793 - 20 August 2020

    Abstract Emotion recognition systems are helpful in human–machine interactions and Intelligence Medical applications. Electroencephalogram (EEG) is closely related to the central nervous system activity of the brain. Compared with other signals, EEG is more closely associated with the emotional activity. It is essential to study emotion recognition based on EEG information. In the research of emotion recognition based on EEG, it is a common problem that the results of individual emotion classification vary greatly under the same scheme of emotion recognition, which affects the engineering application of emotion recognition. In order to improve the overall emotion… More >

  • Open Access

    ARTICLE

    Grading Method for Hypoxic-Ischemic Encephalopathy Based on Neonatal EEG

    Jingmin Guo1, Xiu Cheng1, Duanpo Wu2, 3, *

    CMES-Computer Modeling in Engineering & Sciences, Vol.122, No.2, pp. 721-741, 2020, DOI:10.32604/cmes.2020.07470 - 01 February 2020

    Abstract The grading of hypoxic-ischemic encephalopathy (HIE) contributes to the clinical decision making for neonates with HIE. In this paper, an automated grading method based on electroencephalogram (EEG) data is proposed to describe the severity of HIE infants, namely mild asphyxia, moderate asphyxia and severe asphyxia. The automated grading method is based on a multi-class support vector machine (SVM) classifier, and the input features of SVM classifier include long-term features which are extracted by decomposing the EEG data into different 64 s epoch data and short-term features which are extracted by segmenting the 64 s epoch More >

  • Open Access

    ARTICLE

    A Survey on Machine Learning Algorithms in Little-Labeled Data for Motor Imagery-Based Brain-Computer Interfaces

    Yuxi Jia1, Feng Li1,2, Fei Wang1,2,*, Yan Gui1,2,3

    Journal of Information Hiding and Privacy Protection, Vol.1, No.1, pp. 11-21, 2019, DOI:10.32604/jihpp.2019.05979

    Abstract The Brain-Computer Interfaces (BCIs) had been proposed and used in therapeutics for decades. However, the need of time-consuming calibration phase and the lack of robustness, which are caused by little-labeled data, are restricting the advance and application of BCI, especially for the BCI based on motor imagery (MI). In this paper, we reviewed the recent development in the machine learning algorithm used in the MI-based BCI, which may provide potential solutions for addressing the issue. We classified these algorithms into two categories, namely, and enhancing the representation and expanding the training set. Specifically, these methods More >

Displaying 41-50 on page 5 of 45. Per Page