Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (2)
  • Open Access

    ARTICLE

    A Chinese Named Entity Recognition Method for News Domain Based on Transfer Learning and Word Embeddings

    Rui Fang, Liangzhong Cui*

    CMC-Computers, Materials & Continua, Vol.83, No.2, pp. 3247-3275, 2025, DOI:10.32604/cmc.2025.060422 - 16 April 2025

    Abstract Named Entity Recognition (NER) is vital in natural language processing for the analysis of news texts, as it accurately identifies entities such as locations, persons, and organizations, which is crucial for applications like news summarization and event tracking. However, NER in the news domain faces challenges due to insufficient annotated data, complex entity structures, and strong context dependencies. To address these issues, we propose a new Chinese-named entity recognition method that integrates transfer learning with word embeddings. Our approach leverages the ERNIE pre-trained model for transfer learning and obtaining general language representations and incorporates the More >

  • Open Access

    ARTICLE

    SA-Model: Multi-Feature Fusion Poetic Sentiment Analysis Based on a Hybrid Word Vector Model

    Lingli Zhang1, Yadong Wu1,*, Qikai Chu2, Pan Li2, Guijuan Wang3,4, Weihan Zhang1, Yu Qiu1, Yi Li1

    CMES-Computer Modeling in Engineering & Sciences, Vol.137, No.1, pp. 631-645, 2023, DOI:10.32604/cmes.2023.027179 - 23 April 2023

    Abstract Sentiment analysis in Chinese classical poetry has become a prominent topic in historical and cultural tracing, ancient literature research, etc. However, the existing research on sentiment analysis is relatively small. It does not effectively solve the problems such as the weak feature extraction ability of poetry text, which leads to the low performance of the model on sentiment analysis for Chinese classical poetry. In this research, we offer the SA-Model, a poetic sentiment analysis model. SA-Model firstly extracts text vector information and fuses it through Bidirectional encoder representation from transformers-Whole word masking-extension (BERT-wwm-ext) and Enhanced More >

Displaying 1-10 on page 1 of 2. Per Page