Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (115)
  • Open Access

    ARTICLE

    An Intelligent Cardiovascular Diseases Prediction System Focused on Privacy

    Manjur Kolhar*, Mohammed Misfer

    Intelligent Automation & Soft Computing, Vol.36, No.1, pp. 529-542, 2023, DOI:10.32604/iasc.2023.030098 - 29 September 2022

    Abstract Machine learning (ML) and cloud computing have now evolved to the point where they are able to be used effectively. Further improvement, however, is required when both of these technologies are combined to reap maximum benefits. A way of improving the system is by enabling healthcare workers to select appropriate machine learning algorithms for prediction and, secondly, by preserving the privacy of patient data so that it cannot be misused. The purpose of this paper is to combine these promising technologies to maintain the privacy of patient data during the disease prediction process. Treatment of… More >

  • Open Access

    ARTICLE

    Modelling Mobile-X Architecture for Offloading in Mobile Edge Computing

    G. Pandiyan*, E. Sasikala

    Intelligent Automation & Soft Computing, Vol.36, No.1, pp. 617-632, 2023, DOI:10.32604/iasc.2023.029337 - 29 September 2022

    Abstract Mobile Edge Computing (MEC) assists clouds to handle enormous tasks from mobile devices in close proximity. The edge servers are not allocated efficiently according to the dynamic nature of the network. It leads to processing delay, and the tasks are dropped due to time limitations. The researchers find it difficult and complex to determine the offloading decision because of uncertain load dynamic condition over the edge nodes. The challenge relies on the offloading decision on selection of edge nodes for offloading in a centralized manner. This study focuses on minimizing task-processing time while simultaneously increasing… More >

  • Open Access

    ARTICLE

    Multi-Zone-Wise Blockchain Based Intrusion Detection and Prevention System for IoT Environment

    Salaheddine Kably1,2,*, Tajeddine Benbarrad1, Nabih Alaoui2, Mounir Arioua1

    CMC-Computers, Materials & Continua, Vol.74, No.1, pp. 253-278, 2023, DOI:10.32604/cmc.2023.032220 - 22 September 2022

    Abstract Blockchain merges technology with the Internet of Things (IoT) for addressing security and privacy-related issues. However, conventional blockchain suffers from scalability issues due to its linear structure, which increases the storage overhead, and Intrusion detection performed was limited with attack severity, leading to performance degradation. To overcome these issues, we proposed MZWB (Multi-Zone-Wise Blockchain) model. Initially, all the authenticated IoT nodes in the network ensure their legitimacy by using the Enhanced Blowfish Algorithm (EBA), considering several metrics. Then, the legitimately considered nodes for network construction for managing the network using Bayesian-Direct Acyclic Graph (B-DAG), which… More >

  • Open Access

    ARTICLE

    Optimization Scheme of Trusted Task Offloading in IIoT Scenario Based on DQN

    Xiaojuan Wang1, Zikui Lu1,*, Siyuan Sun2, Jingyue Wang1, Luona Song3, Merveille Nicolas4

    CMC-Computers, Materials & Continua, Vol.74, No.1, pp. 2055-2071, 2023, DOI:10.32604/cmc.2023.031750 - 22 September 2022

    Abstract With the development of the Industrial Internet of Things (IIoT), end devices (EDs) are equipped with more functions to capture information. Therefore, a large amount of data is generated at the edge of the network and needs to be processed. However, no matter whether these computing tasks are offloaded to traditional central clusters or mobile edge computing (MEC) devices, the data is short of security and may be changed during transmission. In view of this challenge, this paper proposes a trusted task offloading optimization scheme that can offer low latency and high bandwidth services for… More >

  • Open Access

    ARTICLE

    Intelligent Traffic Scheduling for Mobile Edge Computing in IoT via Deep Learning

    Shaoxuan Yun, Ying Chen*

    CMES-Computer Modeling in Engineering & Sciences, Vol.134, No.3, pp. 1815-1835, 2023, DOI:10.32604/cmes.2022.022797 - 20 September 2022

    Abstract Nowadays, with the widespread application of the Internet of Things (IoT), mobile devices are renovating our lives. The data generated by mobile devices has reached a massive level. The traditional centralized processing is not suitable for processing the data due to limited computing power and transmission load. Mobile Edge Computing (MEC) has been proposed to solve these problems. Because of limited computation ability and battery capacity, tasks can be executed in the MEC server. However, how to schedule those tasks becomes a challenge, and is the main topic of this piece. In this paper, we More >

  • Open Access

    REVIEW

    A Review of the Current Task Offloading Algorithms, Strategies and Approach in Edge Computing Systems

    Abednego Acheampong1, Yiwen Zhang1,*, Xiaolong Xu2, Daniel Appiah Kumah2

    CMES-Computer Modeling in Engineering & Sciences, Vol.134, No.1, pp. 35-88, 2023, DOI:10.32604/cmes.2022.021394 - 24 August 2022

    Abstract Task offloading is an important concept for edge computing and the Internet of Things (IoT) because computationintensive tasks must be offloaded to more resource-powerful remote devices. Task offloading has several advantages, including increased battery life, lower latency, and better application performance. A task offloading method determines whether sections of the full application should be run locally or offloaded for execution remotely. The offloading choice problem is influenced by several factors, including application properties, network conditions, hardware features, and mobility, influencing the offloading system’s operational environment. This study provides a thorough examination of current task offloading… More >

  • Open Access

    ARTICLE

    Optimal and Effective Resource Management in Edge Computing

    Darpan Majumder1,*, S. Mohan Kumar2

    Computer Systems Science and Engineering, Vol.44, No.2, pp. 1201-1217, 2023, DOI:10.32604/csse.2023.024868 - 15 June 2022

    Abstract Edge computing is a cloud computing extension where physical computers are installed closer to the device to minimize latency. The task of edge data centers is to include a growing abundance of applications with a small capability in comparison to conventional data centers. Under this framework, Federated Learning was suggested to offer distributed data training strategies by the coordination of many mobile devices for the training of a popular Artificial Intelligence (AI) model without actually revealing the underlying data, which is significantly enhanced in terms of privacy. Federated learning (FL) is a recently developed decentralized… More >

  • Open Access

    ARTICLE

    Efficient UAV-Based MEC Using GPU-Based PSO and Voronoi Diagrams

    Mohamed H. Mousa1,2,*, Mohamed K. Hussein2

    CMES-Computer Modeling in Engineering & Sciences, Vol.133, No.2, pp. 413-434, 2022, DOI:10.32604/cmes.2022.020639 - 21 July 2022

    Abstract Mobile-Edge Computing (MEC) displaces cloud services as closely as possible to the end user. This enables the edge servers to execute the offloaded tasks that are requested by the users, which in turn decreases the energy consumption and the turnaround time delay. However, as a result of a hostile environment or in catastrophic zones with no network, it could be difficult to deploy such edge servers. Unmanned Aerial Vehicles (UAVs) can be employed in such scenarios. The edge servers mounted on these UAVs assist with task offloading. For the majority of IoT applications, the execution… More >

  • Open Access

    ARTICLE

    Intelligent Resource Allocations for Software-Defined Mission-Critical IoT Services

    Chaebeen Nam1, Sa Math1, Prohim Tam1, Seokhoon Kim1,2,*

    CMC-Computers, Materials & Continua, Vol.73, No.2, pp. 4087-4102, 2022, DOI:10.32604/cmc.2022.030575 - 16 June 2022

    Abstract Heterogeneous Internet of Things (IoT) applications generate a diversity of novelty applications and services in next-generation networks (NGN), which is essential to guarantee end-to-end (E2E) communication resources for both control plane (CP) and data plane (DP). Likewise, the heterogeneous 5th generation (5G) communication applications, including Mobile Broadband Communications (MBBC), massive Machine-Type Commutation (mMTC), and ultra-reliable low latency communications (URLLC), obligate to perform intelligent Quality-of-Service (QoS) Class Identifier (QCI), while the CP entities will be suffered from the complicated massive HIOT applications. Moreover, the existing management and orchestration (MANO) models are inappropriate for resource utilization and… More >

  • Open Access

    ARTICLE

    Efficient Computation Offloading of IoT-Based Workflows Using Discrete Teaching Learning-Based Optimization

    Mohamed K. Hussein1,*, Mohamed H. Mousa1,2

    CMC-Computers, Materials & Continua, Vol.73, No.2, pp. 3685-3703, 2022, DOI:10.32604/cmc.2022.026370 - 16 June 2022

    Abstract As the Internet of Things (IoT) and mobile devices have rapidly proliferated, their computationally intensive applications have developed into complex, concurrent IoT-based workflows involving multiple interdependent tasks. By exploiting its low latency and high bandwidth, mobile edge computing (MEC) has emerged to achieve the high-performance computation offloading of these applications to satisfy the quality-of-service requirements of workflows and devices. In this study, we propose an offloading strategy for IoT-based workflows in a high-performance MEC environment. The proposed task-based offloading strategy consists of an optimization problem that includes task dependency, communication costs, workflow constraints, device energy More >

Displaying 61-70 on page 7 of 115. Per Page