Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (73)
  • Open Access

    ARTICLE

    Enhancing IoT-Enabled Electric Vehicle Efficiency: Smart Charging Station and Battery Management Solution

    Supriya Wadekar1,*, Shailendra Mittal1, Ganesh Wakte2, Rajshree Shinde2

    Energy Engineering, Vol.123, No.1, 2026, DOI:10.32604/ee.2025.071761 - 27 December 2025

    Abstract Rapid evolutions of the Internet of Electric Vehicles (IoEVs) are reshaping and modernizing transport systems, yet challenges remain in energy efficiency, better battery aging, and grid stability. Typical charging methods allow for EVs to be charged without thought being given to the condition of the battery or the grid demand, thus increasing energy costs and battery aging. This study proposes a smart charging station with an AI-powered Battery Management System (BMS), developed and simulated in MATLAB/Simulink, to increase optimality in energy flow, battery health, and impractical scheduling within the IoEV environment. The system operates through… More >

  • Open Access

    ARTICLE

    Research on Electric Vehicle Charging Optimization Strategy Based on Improved Crossformer for Carbon Emission Factor Prediction

    Hongyu Wang1, Wenwu Cui1, Kai Cui1, Zixuan Meng2,*, Bin Li2, Wei Zhang1, Wenwen Li1

    Energy Engineering, Vol.123, No.1, 2026, DOI:10.32604/ee.2025.069576 - 27 December 2025

    Abstract To achieve low-carbon regulation of electric vehicle (EV) charging loads under the “dual carbon” goals, this paper proposes a coordinated scheduling strategy that integrates dynamic carbon factor prediction and multi-objective optimization. First, a dual-convolution enhanced improved Crossformer prediction model is constructed, which employs parallel 1 × 1 global and 3 × 3 local convolution modules (Integrated Convolution Block, ICB) for multi-scale feature extraction, combined with an Adaptive Spectral Block (ASB) to enhance time-series fluctuation modeling. Based on high-precision predictions, a carbon-electricity cost joint optimization model is further designed to balance economic, environmental, and grid-friendly objectives.… More > Graphic Abstract

    Research on Electric Vehicle Charging Optimization Strategy Based on Improved Crossformer for Carbon Emission Factor Prediction

  • Open Access

    ARTICLE

    Innovative Dual Two-Phase Cooling System for Thermal Management of Electric Vehicle Batteries Using Dielectric Fluids and Pulsating Heat Pipes

    Federico Sacchelli1, Luca Cattani1,2, Matteo Malavasi1, Fabio Bozzoli1,2,*, Corrado Sciancalepore1

    Frontiers in Heat and Mass Transfer, Vol.23, No.5, pp. 1351-1364, 2025, DOI:10.32604/fhmt.2025.064154 - 31 October 2025

    Abstract This study investigates the feasibility of a novel dual two-phase cooling system for thermal management in lithium-ion batteries used in electric vehicles (EVs). The proposed system aims to combine low-boiling dielectric fluid immersion cooling and pulsating heat pipes (PHPs), in order to leverage the advantages of both technologies for efficient heat dissipation in a completely passive configuration. Experimental evaluations conducted under different discharge conditions demonstrate that the system effectively maintains battery temperatures within the optimal range of 20–40°C, with enhanced temperature uniformity and stability. While the PHP exhibited minimal impact at low power, its role More >

  • Open Access

    ARTICLE

    Techno-Economic Analysis for Hydrogen Storage Integrated Grid Electric Vehicle Charging Bays: A Case Study in Kuching, Sarawak

    Jack Kiing Teck Wei1, Mohanad Taher Mohamed Sayed Roshdy1, Bryan Ho Liang Hui1, Jalal Tavalaei1, Hadi Nabipour Afrouzi2,*

    Energy Engineering, Vol.122, No.11, pp. 4755-4775, 2025, DOI:10.32604/ee.2025.069980 - 27 October 2025

    Abstract In this article, a hybrid energy storage system powered by renewable energy sources is suggested, which is connected to a grid-tied electric vehicle charging bay (EVCB) in Sarawak and is examined for its techno-economic effects. With a focus on three renewable energy sources, namely hydrokinetic power, solar power, and hydrogen fuel cells, the study seeks to minimize reliance on the electrical grid while meeting the growing demand from the growing electric vehicle (EV) infrastructure. A hybrid renewable energy storage system that combines solar power, hydrogen fuel cells, hydrokinetic power, and the grid was simulated and… More >

  • Open Access

    ARTICLE

    A Digital Twin Driven IoT Architecture for Enhanced xEV Performance Monitoring

    J. S. V. Siva Kumar1, Mahmad Mustafa2, Sk. M. Unnisha Begum3, Badugu Suresh4, Rajanand Patnaik Narasipuram5,*

    Energy Engineering, Vol.122, No.10, pp. 3891-3904, 2025, DOI:10.32604/ee.2025.070052 - 30 September 2025

    Abstract Electric vehicle (EV) monitoring systems commonly depend on IoT-based sensor measurements to track key performance parameters such as vehicle speed, state of charge (SoC), battery temperature, power consumption, motor RPM, and regenerative braking. While these systems enable real-time data acquisition, they are often hindered by sensor noise, communication delays, and measurement uncertainties, which compromise their reliability for critical decision-making. To overcome these limitations, this study introduces a comparative framework that integrates reference signals, a digital twin model emulating ideal system behavior, and real-time IoT measurements. The digital twin provides a predictive and noise-resilient representation of More >

  • Open Access

    ARTICLE

    Robust Load Frequency Control in Hybrid Power Systems Using QOSCA-Tuned PID with EV Loads

    Pralay Roy1, Pabitra Kumar Biswas1, Chiranjit Sain2,*, Taha Selim Ustun3,*

    Energy Engineering, Vol.122, No.10, pp. 4035-4060, 2025, DOI:10.32604/ee.2025.068989 - 30 September 2025

    Abstract This study presents the use of an innovative population-based algorithm called the Sine Cosine Algorithm and its metaheuristic form, Quasi Oppositional Sine Cosine Algorithm, to automatic generation control of a multiple-source-based interconnected power system that consists of thermal, gas, and hydro power plants. The Proportional-Integral-Derivative controller, which is utilized for automated generation control in an interconnected hybrid power system with a DC link connecting two regions, has been tuned using the proposed optimization technique. An Electric Vehicle is taken into consideration only as an electrical load. The Quasi Oppositional Sine Cosine method’s performance and efficacy… More >

  • Open Access

    ARTICLE

    Forensic Analysis of Cyberattacks in Electric Vehicle Charging Systems Using Host-Level Data

    Salam Al-E’mari1, Yousef Sanjalawe2,*, Budoor Allehyani3, Ghader Kurdi4, Sharif Makhadmeh2, Ameera Jaradat5, Duaa Hijazi6

    CMC-Computers, Materials & Continua, Vol.85, No.2, pp. 3289-3320, 2025, DOI:10.32604/cmc.2025.067950 - 23 September 2025

    Abstract Electric Vehicle Charging Systems (EVCS) are increasingly vulnerable to cybersecurity threats as they integrate deeply into smart grids and Internet of Things (IoT) environments, raising significant security challenges. Most existing research primarily emphasizes network-level anomaly detection, leaving critical vulnerabilities at the host level underexplored. This study introduces a novel forensic analysis framework leveraging host-level data, including system logs, kernel events, and Hardware Performance Counters (HPC), to detect and analyze sophisticated cyberattacks such as cryptojacking, Denial-of-Service (DoS), and reconnaissance activities targeting EVCS. Using comprehensive forensic analysis and machine learning models, the proposed framework significantly outperforms existing More >

  • Open Access

    ARTICLE

    A Novel Attention-Augmented LSTM (AA-LSTM) Model for Optimized Energy Management in EV Charging Stations

    Harendra Pratap Singh1,2, Ishfaq Hussain Rather3, Sushil Kumar1, Mohammad Aljaidi4, Omprakash Kaiwartya5,*

    CMC-Computers, Materials & Continua, Vol.84, No.3, pp. 5577-5595, 2025, DOI:10.32604/cmc.2025.065741 - 30 July 2025

    Abstract Electric Vehicles (EVs) have emerged as a cleaner, low-carbon, and environmentally friendly alternative to traditional internal combustion engine (ICE) vehicles. With the increasing adoption of EVs, they are expected to eventually replace ICE vehicles entirely. However, the rapid growth of EVs has significantly increased energy demand, posing challenges for power grids and infrastructure. This surge in energy demand has driven advancements in developing efficient charging infrastructure and energy management solutions to mitigate the risks of power outages and disruptions caused by the rising number of EVs on the road. To address these challenges, various deep… More >

  • Open Access

    ARTICLE

    Park Integrated Energy System Optimization Considering Carbon Excess Ratio and Electric Vehicle Coupling

    Yanjie Liu, Ximin Cao*, Yanchi Zhang

    Energy Engineering, Vol.122, No.8, pp. 3377-3398, 2025, DOI:10.32604/ee.2025.066577 - 24 July 2025

    Abstract Under the “dual carbon” goals, this paper constructs an optimization model of the comprehensive energy system in the park. A stepwise carbon excess rate mechanism and an electric vehicle coupling strategy are proposed: A carbon quota trading system is established based on the baseline method, and the stepwise function is adopted to quantify the cost of excess carbon emissions; Introduce the price demand response and the two-way interaction mechanism of electric Vehicle vehicle-to-grid (V2G) to enhance the flexible regulation ability. Aiming at the uncertainty of wind and solar output, a typical scene set is generated… More >

  • Open Access

    ARTICLE

    Coordinated Charging Scheduling Strategy for Electric Vehicles Considering Vehicle Urgency

    Zhenhao Wang1, Hongwei Li1,*, Dan Pang2, Jinming Ge1

    Energy Engineering, Vol.122, No.8, pp. 3223-3242, 2025, DOI:10.32604/ee.2025.063615 - 24 July 2025

    Abstract Aiming at the problem of increasing the peak-to-valley difference of grid load and the rising cost of user charging caused by the disorderly charging of large-scale electric vehicles, this paper proposes a coordinated charging scheduling strategy for multiple types of electric vehicles based on the degree of urgency of vehicle use. First, considering the range loss characteristics, dynamic time-sharing tariff mechanism, and user incentive policy in the low-temperature environment of northern winter, a differentiated charging model is constructed for four types of vehicles: family cars, official cars, buses, and cabs. Then, we innovatively introduce the… More >

Displaying 1-10 on page 1 of 73. Per Page