Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (185)
  • Open Access

    ARTICLE

    Algorithmically Enhanced Data-Driven Prediction of Shear Strength for Concrete-Filled Steel Tubes

    Shengkang Zhang1, Yong Jin2,*, Soon Poh Yap1,*, Haoyun Fan1, Shiyuan Li3, Ahmed El-Shafie4, Zainah Ibrahim1, Amr El-Dieb5

    CMES-Computer Modeling in Engineering & Sciences, Vol.146, No.1, 2026, DOI:10.32604/cmes.2025.075351 - 29 January 2026

    Abstract Concrete-filled steel tubes (CFST) are widely utilized in civil engineering due to their superior load-bearing capacity, ductility, and seismic resistance. However, existing design codes, such as AISC and Eurocode 4, tend to be excessively conservative as they fail to account for the composite action between the steel tube and the concrete core. To address this limitation, this study proposes a hybrid model that integrates XGBoost with the Pied Kingfisher Optimizer (PKO), a nature-inspired algorithm, to enhance the accuracy of shear strength prediction for CFST columns. Additionally, quantile regression is employed to construct prediction intervals for… More >

  • Open Access

    ARTICLE

    Bias Calibration under Constrained Communication Using Modified Kalman Filter: Algorithm Design and Application to Gyroscope Parameter Error Calibration

    Qi Li, Yifan Wang*, Yuxi Liu, Xingjing She, Yixuan Wu

    CMES-Computer Modeling in Engineering & Sciences, Vol.146, No.1, 2026, DOI:10.32604/cmes.2025.074066 - 29 January 2026

    Abstract In data communication, limited communication resources often lead to measurement bias, which adversely affects subsequent system estimation if not effectively handled. This paper proposes a novel bias calibration algorithm under communication constraints to achieve accurate system states of the interested system. An output-based event-triggered scheme is first employed to alleviate transmission burden. Accounting for the limited-communication-induced measurement bias, a novel bias calibration algorithm following the Kalman filtering line is developed to restrain the effect of the measurement bias on system estimation, thereby achieving accurate system state estimates. Subsequently, the Field Programmable Gate Array (FPGA) implementation More >

  • Open Access

    ARTICLE

    FeatherGuard: A Data-Driven Lightweight Error Protection Scheme for DNN Inference on Edge Devices

    Dong Hyun Lee1, Na Kyung Lee2, Young Seo Lee1,2,*

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-17, 2026, DOI:10.32604/cmc.2025.069976 - 09 December 2025

    Abstract There has been an increasing emphasis on performing deep neural network (DNN) inference locally on edge devices due to challenges such as network congestion and security concerns. However, as DRAM process technology continues to scale down, the bit-flip errors in the memory of edge devices become more frequent, thereby leading to substantial DNN inference accuracy loss. Though several techniques have been proposed to alleviate the accuracy loss in edge environments, they require complex computations and additional parity bits for error correction, thus resulting in significant performance and storage overheads. In this paper, we propose FeatherGuard,… More >

  • Open Access

    ARTICLE

    Error Analysis of Geomagnetic Field Reconstruction Model Using Negative Learning for Seismic Anomaly Detection

    Nur Syaiful Afrizal1, Khairul Adib Yusof1,2,*, Lokman Hakim Muhamad1, Nurul Shazana Abdul Hamid2,3, Mardina Abdullah2,4, Mohd Amiruddin Abd Rahman1, Syamsiah Mashohor5, Masashi Hayakawa6,7

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-16, 2026, DOI:10.32604/cmc.2025.066421 - 09 December 2025

    Abstract Detecting geomagnetic anomalies preceding earthquakes is a challenging yet promising area of research that has gained increasing attention in recent years. This study introduces a novel reconstruction-based modeling approach enhanced by negative learning, employing a Bidirectional Long Short-Term Memory (BiLSTM) network explicitly trained to accurately reconstruct non-seismic geomagnetic signals while intentionally amplifying reconstruction errors for seismic signals. By penalizing the model for accurately reconstructing seismic anomalies, the negative learning approach effectively magnifies the differences between normal and anomalous data. This strategic differentiation enhances the sensitivity of the BiLSTM network, enabling improved detection of subtle geomagnetic More >

  • Open Access

    ARTICLE

    Attitude Estimation Using an Enhanced Error-State Kalman Filter with Multi-Sensor Fusion

    Yu Tao1, Tian Yin2, Yang Jie1,*

    Journal on Artificial Intelligence, Vol.7, pp. 549-570, 2025, DOI:10.32604/jai.2025.072727 - 01 December 2025

    Abstract To address the issue of insufficient accuracy in attitude estimation using Inertial Measurement Units (IMU), this paper proposes a multi-sensor fusion attitude estimation method based on an improved Error-State Kalman Filter (ESKF). Several adaptive mechanisms are introduced within the standard ESKF framework: first, the process noise covariance is dynamically adjusted based on gyroscope angular velocity to enhance the algorithm’s adaptability under both static and dynamic conditions; second, the Sage-Husa algorithm is employed to estimate the measurement noise covariance of the accelerometer and magnetometer in real-time, mitigating disturbances caused by external accelerations and magnetic fields. Additionally,… More >

  • Open Access

    PROCEEDINGS

    Development of the FractureX Platform Based on FEALPy and Its Application in Brittle Fracture Simulation

    Tian Tian1, Huayi Wei2,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.33, No.4, pp. 1-2, 2025, DOI:10.32604/icces.2025.011175

    Abstract Brittle fracture is a critical failure mode in structural materials, and accurately simulating its evolution is essential for engineering design, material performance evaluation, and failure prediction. Traditional numerical methods, however, face significant challenges when dealing with higher-order fracture models and complex fracture behaviors. To overcome these challenges, this study proposes an innovative simulation framework based on higher-order finite element methods and adaptive mesh refinement, effectively balancing computational efficiency and simulation accuracy.
    The research first develops a higher-order finite element method for the continuum damage fracture phase-field model. By incorporating higher-order finite element techniques, the proposed method… More >

  • Open Access

    ARTICLE

    A Novel Reduced Error Pruning Tree Forest with Time-Based Missing Data Imputation (REPTF-TMDI) for Traffic Flow Prediction

    Yunus Dogan1, Goksu Tuysuzoglu1, Elife Ozturk Kiyak2, Bita Ghasemkhani3, Kokten Ulas Birant1,4, Semih Utku1, Derya Birant1,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.144, No.2, pp. 1677-1715, 2025, DOI:10.32604/cmes.2025.069255 - 31 August 2025

    Abstract Accurate traffic flow prediction (TFP) is vital for efficient and sustainable transportation management and the development of intelligent traffic systems. However, missing data in real-world traffic datasets poses a significant challenge to maintaining prediction precision. This study introduces REPTF-TMDI, a novel method that combines a Reduced Error Pruning Tree Forest (REPTree Forest) with a newly proposed Time-based Missing Data Imputation (TMDI) approach. The REPTree Forest, an ensemble learning approach, is tailored for time-related traffic data to enhance predictive accuracy and support the evolution of sustainable urban mobility solutions. Meanwhile, the TMDI approach exploits temporal patterns… More >

  • Open Access

    ARTICLE

    Approximate Homomorphic Encryption for MLaaS by CKKS with Operation-Error-Bound

    Ray-I Chang1, Chia-Hui Wang2,*, Yen-Ting Chang1, Lien-Chen Wei2

    CMC-Computers, Materials & Continua, Vol.85, No.1, pp. 503-518, 2025, DOI:10.32604/cmc.2025.068516 - 29 August 2025

    Abstract As data analysis often incurs significant communication and computational costs, these tasks are increasingly outsourced to cloud computing platforms. However, this introduces privacy concerns, as sensitive data must be transmitted to and processed by untrusted parties. To address this, fully homomorphic encryption (FHE) has emerged as a promising solution for privacy-preserving Machine-Learning-as-a-Service (MLaaS), enabling computation on encrypted data without revealing the plaintext. Nevertheless, FHE remains computationally expensive. As a result, approximate homomorphic encryption (AHE) schemes, such as CKKS, have attracted attention due to their efficiency. In our previous work, we proposed RP-OKC, a CKKS-based clustering… More >

  • Open Access

    ARTICLE

    A Novel Cascaded TID-FOI Controller Tuned with Walrus Optimization Algorithm for Frequency Regulation of Deregulated Power System

    Geetanjali Dei1,2, Deepak Kumar Gupta1, Binod Kumar Sahu2, Amitkumar V. Jha3, Bhargav Appasani3,*, Nicu Bizon4,5,*

    Energy Engineering, Vol.122, No.8, pp. 3399-3431, 2025, DOI:10.32604/ee.2025.067357 - 24 July 2025

    Abstract This paper presents an innovative and effective control strategy tailored for a deregulated, diversified energy system involving multiple interconnected area. Each area integrates a unique mix of power generation technologies: Area 1 combines thermal, hydro, and distributed generation; Area 2 utilizes a blend of thermal units, distributed solar technologies (DST), and hydro power; and Third control area hosts geothermal power station alongside thermal power generation unit and hydropower units. The suggested control system employs a multi-layered approach, featuring a blended methodology utilizing the Tilted Integral Derivative controller (TID) and the Fractional-Order Integral method to enhance… More >

  • Open Access

    ARTICLE

    Impact of Dataset Size on Machine Learning Regression Accuracy in Solar Power Prediction

    S. M. Rezaul Karim1,2, Md. Shouquat Hossain1,3, Khadiza Akter1, Debasish Sarker4, Md. Moniul Kabir 2, Mamdouh Assad5,*

    Energy Engineering, Vol.122, No.8, pp. 3041-3054, 2025, DOI:10.32604/ee.2025.066867 - 24 July 2025

    Abstract Knowing the influence of the size of datasets for regression models can help in improving the accuracy of a solar power forecast and make the most out of renewable energy systems. This research explores the influence of dataset size on the accuracy and reliability of regression models for solar power prediction, contributing to better forecasting methods. The study analyzes data from two solar panels, aSiMicro03036 and aSiTandem72-46, over 7, 14, 17, 21, 28, and 38 days, with each dataset comprising five independent and one dependent parameter, and split 80–20 for training and testing. Results indicate… More > Graphic Abstract

    Impact of Dataset Size on Machine Learning Regression Accuracy in Solar Power Prediction

Displaying 1-10 on page 1 of 185. Per Page