Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (116)
  • Open Access

    ARTICLE

    Research on Vehicle Safety Based on Multi-Sensor Feature Fusion for Autonomous Driving Task

    Yang Su1,*, Xianrang Shi1, Tinglun Song2

    CMC-Computers, Materials & Continua, Vol.83, No.3, pp. 5831-5848, 2025, DOI:10.32604/cmc.2025.064036 - 19 May 2025

    Abstract Ensuring that autonomous vehicles maintain high precision and rapid response capabilities in complex and dynamic driving environments is a critical challenge in the field of autonomous driving. This study aims to enhance the learning efficiency of multi-sensor feature fusion in autonomous driving tasks, thereby improving the safety and responsiveness of the system. To achieve this goal, we propose an innovative multi-sensor feature fusion model that integrates three distinct modalities: visual, radar, and lidar data. The model optimizes the feature fusion process through the introduction of two novel mechanisms: Sparse Channel Pooling (SCP) and Residual Triplet-Attention… More >

  • Open Access

    ARTICLE

    Rolling Bearing Fault Diagnosis Based on Cross-Attention Fusion WDCNN and BILSTM

    Yingyong Zou*, Xingkui Zhang, Tao Liu, Yu Zhang, Long Li, Wenzhuo Zhao

    CMC-Computers, Materials & Continua, Vol.83, No.3, pp. 4699-4723, 2025, DOI:10.32604/cmc.2025.062625 - 19 May 2025

    Abstract High-speed train engine rolling bearings play a crucial role in maintaining engine health and minimizing operational losses during train operation. To solve the problems of low accuracy of the diagnostic model and unstable model due to the influence of noise during fault detection, a rolling bearing fault diagnosis model based on cross-attention fusion of WDCNN and BILSTM is proposed. The first layer of the wide convolutional kernel deep convolutional neural network (WDCNN) is used to extract the local features of the signal and suppress the high-frequency noise. A Bidirectional Long Short-Term Memory Network (BILSTM) is… More >

  • Open Access

    ARTICLE

    YOLO-AB: A Fusion Algorithm for the Elders’ Falling and Smoking Behavior Detection Based on Improved YOLOv8

    Xianghong Cao, Chenxu Li*, Haoting Zhai

    CMC-Computers, Materials & Continua, Vol.83, No.3, pp. 5487-5515, 2025, DOI:10.32604/cmc.2025.061823 - 19 May 2025

    Abstract The behavior safety testing of more and more elderly people living alone has become a hot research topic along with the arrival of an aging society. A YOLO-Abnormal Behaviour (YOLO-AB) algorithm for fusion detection of falling and smoking behaviors of elderly people living alone has been proposed in this paper, which can fully utilize the potential of the YOLOv8 algorithm on object detection and deeply explore the characteristics of different types of behaviors among the elderly, to solve the problems of single detection type, low fusion detection accuracy, and high missed detection rate. Firstly, datasets… More >

  • Open Access

    ARTICLE

    End-to-End Audio Pattern Recognition Network for Overcoming Feature Limitations in Human-Machine Interaction

    Zijian Sun1,2, Yaqian Li3,4,*, Haoran Liu1,2, Haibin Li3,4, Wenming Zhang3,4

    CMC-Computers, Materials & Continua, Vol.83, No.2, pp. 3187-3210, 2025, DOI:10.32604/cmc.2025.061920 - 16 April 2025

    Abstract In recent years, audio pattern recognition has emerged as a key area of research, driven by its applications in human-computer interaction, robotics, and healthcare. Traditional methods, which rely heavily on handcrafted features such as Mel filters, often suffer from information loss and limited feature representation capabilities. To address these limitations, this study proposes an innovative end-to-end audio pattern recognition framework that directly processes raw audio signals, preserving original information and extracting effective classification features. The proposed framework utilizes a dual-branch architecture: a global refinement module that retains channel and temporal details and a multi-scale embedding… More >

  • Open Access

    ARTICLE

    Fake News Detection Based on Cross-Modal Ambiguity Computation and Multi-Scale Feature Fusion

    Jianxiang Cao1, Jinyang Wu1, Wenqian Shang1,*, Chunhua Wang1, Kang Song1, Tong Yi2,*, Jiajun Cai1, Haibin Zhu3

    CMC-Computers, Materials & Continua, Vol.83, No.2, pp. 2659-2675, 2025, DOI:10.32604/cmc.2025.060025 - 16 April 2025

    Abstract With the rapid growth of social media, the spread of fake news has become a growing problem, misleading the public and causing significant harm. As social media content is often composed of both images and text, the use of multimodal approaches for fake news detection has gained significant attention. To solve the problems existing in previous multi-modal fake news detection algorithms, such as insufficient feature extraction and insufficient use of semantic relations between modes, this paper proposes the MFFFND-Co (Multimodal Feature Fusion Fake News Detection with Co-Attention Block) model. First, the model deeply explores the More >

  • Open Access

    ARTICLE

    Multi-Scale Feature Fusion Network for Accurate Detection of Cervical Abnormal Cells

    Chuanyun Xu1,#, Die Hu1,#, Yang Zhang1,*, Shuaiye Huang1, Yisha Sun1, Gang Li2

    CMC-Computers, Materials & Continua, Vol.83, No.1, pp. 559-574, 2025, DOI:10.32604/cmc.2025.061579 - 26 March 2025

    Abstract Detecting abnormal cervical cells is crucial for early identification and timely treatment of cervical cancer. However, this task is challenging due to the morphological similarities between abnormal and normal cells and the significant variations in cell size. Pathologists often refer to surrounding cells to identify abnormalities. To emulate this slide examination behavior, this study proposes a Multi-Scale Feature Fusion Network (MSFF-Net) for detecting cervical abnormal cells. MSFF-Net employs a Cross-Scale Pooling Model (CSPM) to effectively capture diverse features and contextual information, ranging from local details to the overall structure. Additionally, a Multi-Scale Fusion Attention (MSFA)… More >

  • Open Access

    ARTICLE

    Lightweight Classroom Student Action Recognition Method Based on Spatiotemporal Multimodal Feature Fusion

    Shaodong Zou1, Di Wu1, Jianhou Gan1,2,*, Juxiang Zhou1,2, Jiatian Mei1,2

    CMC-Computers, Materials & Continua, Vol.83, No.1, pp. 1101-1116, 2025, DOI:10.32604/cmc.2025.061376 - 26 March 2025

    Abstract The task of student action recognition in the classroom is to precisely capture and analyze the actions of students in classroom videos, providing a foundation for realizing intelligent and accurate teaching. However, the complex nature of the classroom environment has added challenges and difficulties in the process of student action recognition. In this research article, with regard to the circumstances where students are prone to be occluded and classroom computing resources are restricted in real classroom scenarios, a lightweight multi-modal fusion action recognition approach is put forward. This proposed method is capable of enhancing the… More >

  • Open Access

    ARTICLE

    CE-CDNet: A Transformer-Based Channel Optimization Approach for Change Detection in Remote Sensing

    Jia Liu1, Hang Gu1, Fangmei Liu1, Hao Chen1, Zuhe Li1, Gang Xu2, Qidong Liu2, Wei Wang2,*

    CMC-Computers, Materials & Continua, Vol.83, No.1, pp. 803-822, 2025, DOI:10.32604/cmc.2025.060966 - 26 March 2025

    Abstract In recent years, convolutional neural networks (CNN) and Transformer architectures have made significant progress in the field of remote sensing (RS) change detection (CD). Most of the existing methods directly stack multiple layers of Transformer blocks, which achieves considerable improvement in capturing variations, but at a rather high computational cost. We propose a channel-Efficient Change Detection Network (CE-CDNet) to address the problems of high computational cost and imbalanced detection accuracy in remote sensing building change detection. The adaptive multi-scale feature fusion module (CAMSF) and lightweight Transformer decoder (LTD) are introduced to improve the change detection More >

  • Open Access

    ARTICLE

    Bilateral Dual-Residual Real-Time Semantic Segmentation Network

    Shijie Xiang, Dong Zhou, Dan Tian*, Zihao Wang

    CMC-Computers, Materials & Continua, Vol.83, No.1, pp. 497-515, 2025, DOI:10.32604/cmc.2025.060244 - 26 March 2025

    Abstract Real-time semantic segmentation tasks place stringent demands on network inference speed, often requiring a reduction in network depth to decrease computational load. However, shallow networks tend to exhibit degradation in feature extraction completeness and inference accuracy. Therefore, balancing high performance with real-time requirements has become a critical issue in the study of real-time semantic segmentation. To address these challenges, this paper proposes a lightweight bilateral dual-residual network. By introducing a novel residual structure combined with feature extraction and fusion modules, the proposed network significantly enhances representational capacity while reducing computational costs. Specifically, an improved compound… More >

  • Open Access

    ARTICLE

    A Global-Local Parallel Dual-Branch Deep Learning Model with Attention-Enhanced Feature Fusion for Brain Tumor MRI Classification

    Zhiyong Li, Xinlian Zhou*

    CMC-Computers, Materials & Continua, Vol.83, No.1, pp. 739-760, 2025, DOI:10.32604/cmc.2025.059807 - 26 March 2025

    Abstract Brain tumor classification is crucial for personalized treatment planning. Although deep learning-based Artificial Intelligence (AI) models can automatically analyze tumor images, fine details of small tumor regions may be overlooked during global feature extraction. Therefore, we propose a brain tumor Magnetic Resonance Imaging (MRI) classification model based on a global-local parallel dual-branch structure. The global branch employs ResNet50 with a Multi-Head Self-Attention (MHSA) to capture global contextual information from whole brain images, while the local branch utilizes VGG16 to extract fine-grained features from segmented brain tumor regions. The features from both branches are processed through More >

Displaying 1-10 on page 1 of 116. Per Page