Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (145)
  • Open Access

    ARTICLE

    MFF-YOLO: A Target Detection Algorithm for UAV Aerial Photography

    Dike Chen1,2,3, Zhiyong Qin2, Ji Zhang2, Hongyuan Wang1,2,*

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-17, 2026, DOI:10.32604/cmc.2025.072494 - 09 December 2025

    Abstract To address the challenges of small target detection and significant scale variations in unmanned aerial vehicle (UAV) aerial imagery, which often lead to missed and false detections, we propose Multi-scale Feature Fusion YOLO (MFF-YOLO), an enhanced algorithm based on YOLOv8s. Our approach introduces a Multi-scale Feature Fusion Strategy (MFFS), comprising the Multiple Features C2f (MFC) module and the Scale Sequence Feature Fusion (SSFF) module, to improve feature integration across different network levels. This enables more effective capture of fine-grained details and sequential multi-scale features. Furthermore, we incorporate Inner-CIoU, an improved loss function that uses auxiliary More >

  • Open Access

    ARTICLE

    MFCCT: A Robust Spectral-Temporal Fusion Method with DeepConvLSTM for Human Activity Recognition

    Rashid Jahangir1,*, Nazik Alturki2, Muhammad Asif Nauman3, Faiqa Hanif1

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-20, 2026, DOI:10.32604/cmc.2025.071574 - 09 December 2025

    Abstract Human activity recognition (HAR) is a method to predict human activities from sensor signals using machine learning (ML) techniques. HAR systems have several applications in various domains, including medicine, surveillance, behavioral monitoring, and posture analysis. Extraction of suitable information from sensor data is an important part of the HAR process to recognize activities accurately. Several research studies on HAR have utilized Mel frequency cepstral coefficients (MFCCs) because of their effectiveness in capturing the periodic pattern of sensor signals. However, existing MFCC-based approaches often fail to capture sufficient temporal variability, which limits their ability to distinguish… More >

  • Open Access

    ARTICLE

    Pavement Crack Detection Based on Star-YOLO11

    Jiang Mi1, Zhijian Gan1, Pengliu Tan2,*, Xin Chang2, Zhi Wang2, Haisheng Xie2

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-22, 2026, DOI:10.32604/cmc.2025.069348 - 10 November 2025

    Abstract In response to the challenges in highway pavement distress detection, such as multiple defect categories, difficulties in feature extraction for different damage types, and slow identification speeds, this paper proposes an enhanced pavement crack detection model named Star-YOLO11. This improved algorithm modifies the YOLO11 architecture by substituting the original C3k2 backbone network with a Star-s50 feature extraction network. The enhanced structure adjusts the number of stacked layers in the StarBlock module to optimize detection accuracy and improve model efficiency. To enhance the accuracy of pavement crack detection and improve model efficiency, three key modifications to… More >

  • Open Access

    ARTICLE

    M2ATNet: Multi-Scale Multi-Attention Denoising and Feature Fusion Transformer for Low-Light Image Enhancement

    Zhongliang Wei1,*, Jianlong An1, Chang Su2

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-20, 2026, DOI:10.32604/cmc.2025.069335 - 10 November 2025

    Abstract Images taken in dim environments frequently exhibit issues like insufficient brightness, noise, color shifts, and loss of detail. These problems pose significant challenges to dark image enhancement tasks. Current approaches, while effective in global illumination modeling, often struggle to simultaneously suppress noise and preserve structural details, especially under heterogeneous lighting. Furthermore, misalignment between luminance and color channels introduces additional challenges to accurate enhancement. In response to the aforementioned difficulties, we introduce a single-stage framework, M2ATNet, using the multi-scale multi-attention and Transformer architecture. First, to address the problems of texture blurring and residual noise, we design… More >

  • Open Access

    ARTICLE

    EHDC-YOLO: Enhancing Object Detection for UAV Imagery via Multi-Scale Edge and Detail Capture

    Zhiyong Deng1, Yanchen Ye2, Jiangling Guo1,*

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-18, 2026, DOI:10.32604/cmc.2025.069090 - 10 November 2025

    Abstract With the rapid expansion of drone applications, accurate detection of objects in aerial imagery has become crucial for intelligent transportation, urban management, and emergency rescue missions. However, existing methods face numerous challenges in practical deployment, including scale variation handling, feature degradation, and complex backgrounds. To address these issues, we propose Edge-enhanced and Detail-Capturing You Only Look Once (EHDC-YOLO), a novel framework for object detection in Unmanned Aerial Vehicle (UAV) imagery. Based on the You Only Look Once version 11 nano (YOLOv11n) baseline, EHDC-YOLO systematically introduces several architectural enhancements: (1) a Multi-Scale Edge Enhancement (MSEE) module… More >

  • Open Access

    ARTICLE

    Bearing Fault Diagnosis Based on Multimodal Fusion GRU and Swin-Transformer

    Yingyong Zou*, Yu Zhang, Long Li, Tao Liu, Xingkui Zhang

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-24, 2026, DOI:10.32604/cmc.2025.068246 - 10 November 2025

    Abstract Fault diagnosis of rolling bearings is crucial for ensuring the stable operation of mechanical equipment and production safety in industrial environments. However, due to the nonlinearity and non-stationarity of collected vibration signals, single-modal methods struggle to capture fault features fully. This paper proposes a rolling bearing fault diagnosis method based on multi-modal information fusion. The method first employs the Hippopotamus Optimization Algorithm (HO) to optimize the number of modes in Variational Mode Decomposition (VMD) to achieve optimal modal decomposition performance. It combines Convolutional Neural Networks (CNN) and Gated Recurrent Units (GRU) to extract temporal features… More >

  • Open Access

    ARTICLE

    PPG Based Digital Biomarker for Diabetes Detection with Multiset Spatiotemporal Feature Fusion and XAI

    Mubashir Ali1,2, Jingzhen Li1, Zedong Nie1,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.3, pp. 4153-4177, 2025, DOI:10.32604/cmes.2025.073048 - 23 December 2025

    Abstract Diabetes imposes a substantial burden on global healthcare systems. Worldwide, nearly half of individuals with diabetes remain undiagnosed, while conventional diagnostic techniques are often invasive, painful, and expensive. In this study, we propose a noninvasive approach for diabetes detection using photoplethysmography (PPG), which is widely integrated into modern wearable devices. First, we derived velocity plethysmography (VPG) and acceleration plethysmography (APG) signals from PPG to construct multi-channel waveform representations. Second, we introduced a novel multiset spatiotemporal feature fusion framework that integrates hand-crafted temporal, statistical, and nonlinear features with recursive feature elimination and deep feature extraction using… More >

  • Open Access

    ARTICLE

    DeepNeck: Bottleneck Assisted Customized Deep Convolutional Neural Networks for Diagnosing Gastrointestinal Tract Disease

    Sidra Naseem1, Rashid Jahangir1,*, Nazik Alturki2, Faheem Shehzad3, Muhammad Sami Ullah4

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.2, pp. 2481-2501, 2025, DOI:10.32604/cmes.2025.072575 - 26 November 2025

    Abstract Diagnosing gastrointestinal tract diseases is a critical task requiring accurate and efficient methodologies. While deep learning models have significantly advanced medical image analysis, challenges such as imbalanced datasets and redundant features persist. This study proposes a novel framework that customizes two deep learning models, NasNetMobile and ResNet50, by incorporating bottleneck architectures, named as NasNeck and ResNeck, to enhance feature extraction. The feature vectors are fused into a combined vector, which is further optimized using an improved Whale Optimization Algorithm to minimize redundancy and improve discriminative power. The optimized feature vector is then classified using artificial… More >

  • Open Access

    ARTICLE

    A Lightweight Multimodal Deep Fusion Network for Face Antis Poofing with Cross-Axial Attention and Deep Reinforcement Learning Technique

    Diyar Wirya Omar Ameenulhakeem*, Osman Nuri Uçan

    CMC-Computers, Materials & Continua, Vol.85, No.3, pp. 5671-5702, 2025, DOI:10.32604/cmc.2025.070422 - 23 October 2025

    Abstract Face antispoofing has received a lot of attention because it plays a role in strengthening the security of face recognition systems. Face recognition is commonly used for authentication in surveillance applications. However, attackers try to compromise these systems by using spoofing techniques such as using photos or videos of users to gain access to services or information. Many existing methods for face spoofing face difficulties when dealing with new scenarios, especially when there are variations in background, lighting, and other environmental factors. Recent advancements in deep learning with multi-modality methods have shown their effectiveness in… More >

  • Open Access

    ARTICLE

    Unsupervised Satellite Low-Light Image Enhancement Based on the Improved Generative Adversarial Network

    Ming Chen1,*, Yanfei Niu2, Ping Qi1, Fucheng Wang1

    CMC-Computers, Materials & Continua, Vol.85, No.3, pp. 5015-5035, 2025, DOI:10.32604/cmc.2025.067951 - 23 October 2025

    Abstract This research addresses the critical challenge of enhancing satellite images captured under low-light conditions, which suffer from severely degraded quality, including a lack of detail, poor contrast, and low usability. Overcoming this limitation is essential for maximizing the value of satellite imagery in downstream computer vision tasks (e.g., spacecraft on-orbit connection, spacecraft surface repair, space debris capture) that rely on clear visual information. Our key novelty lies in an unsupervised generative adversarial network featuring two main contributions: (1) an improved U-Net (IU-Net) generator with multi-scale feature fusion in the contracting path for richer semantic feature… More >

Displaying 1-10 on page 1 of 145. Per Page