Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (100)
  • Open Access

    ARTICLE

    Energy Demand Forecasting Using Fused Machine Learning Approaches

    Taher M. Ghazal1,2, Sajida Noreen3, Raed A. Said4, Muhammad Adnan Khan5,*, Shahan Yamin Siddiqui3,6, Sagheer Abbas3, Shabib Aftab3, Munir Ahmad3

    Intelligent Automation & Soft Computing, Vol.31, No.1, pp. 539-553, 2022, DOI:10.32604/iasc.2022.019658 - 03 September 2021

    Abstract The usage of IoT-based smart meter in electric power consumption shows a significant role in helping the users to manage and control their electric power consumption. It produces smooth communication to build equitable electric power distribution for users and improved management of the entire electric system for providers. Machine learning predicting algorithms have been worked to apply the electric efficiency and response of progressive energy creation, transmission, and consumption. In the proposed model, an IoT-based smart meter uses a support vector machine and deep extreme machine learning techniques for professional energy management. A deep extreme More >

  • Open Access

    ARTICLE

    Traffic Flow Statistics Method Based on Deep Learning and Multi-Feature Fusion

    Liang Mu, Hong Zhao*, Yan Li, Xiaotong Liu, Junzheng Qiu, Chuanlong Sun

    CMES-Computer Modeling in Engineering & Sciences, Vol.129, No.2, pp. 465-483, 2021, DOI:10.32604/cmes.2021.017276 - 08 October 2021

    Abstract Traffic flow statistics have become a particularly important part of intelligent transportation. To solve the problems of low real-time robustness and accuracy in traffic flow statistics. In the DeepSort tracking algorithm, the Kalman filter (KF), which is only suitable for linear problems, is replaced by the extended Kalman filter (EKF), which can effectively solve nonlinear problems and integrate the Histogram of Oriented Gradient (HOG) of the target. The multi-target tracking framework was constructed with YOLO V5 target detection algorithm. An efficient and long-running Traffic Flow Statistical framework (TFSF) is established based on the tracking framework.… More >

  • Open Access

    ARTICLE

    YOLOv2PD: An Efficient Pedestrian Detection Algorithm Using Improved YOLOv2 Model

    Chintakindi Balaram Murthy1, Mohammad Farukh Hashmi1, Ghulam Muhammad2,3,*, Salman A. AlQahtani2,3

    CMC-Computers, Materials & Continua, Vol.69, No.3, pp. 3015-3031, 2021, DOI:10.32604/cmc.2021.018781 - 24 August 2021

    Abstract Real-time pedestrian detection is an important task for unmanned driving systems and video surveillance. The existing pedestrian detection methods often work at low speed and also fail to detect smaller and densely distributed pedestrians by losing some of their detection accuracy in such cases. Therefore, the proposed algorithm YOLOv2 (“YOU ONLY LOOK ONCE Version 2”)-based pedestrian detection (referred to as YOLOv2PD) would be more suitable for detecting smaller and densely distributed pedestrians in real-time complex road scenes. The proposed YOLOv2PD algorithm adopts a Multi-layer Feature Fusion (MLFF) strategy, which helps to improve the model’s feature… More >

  • Open Access

    ARTICLE

    Gastrointestinal Tract Infections Classification Using Deep Learning

    Muhammad Ramzan1, Mudassar Raza1, Muhammad Sharif1, Muhammad Attique Khan2, Yunyoung Nam3,*

    CMC-Computers, Materials & Continua, Vol.69, No.3, pp. 3239-3257, 2021, DOI:10.32604/cmc.2021.015920 - 24 August 2021

    Abstract Automatic gastrointestinal (GI) tract disease recognition is an important application of biomedical image processing. Conventionally, microscopic analysis of pathological tissue is used to detect abnormal areas of the GI tract. The procedure is subjective and results in significant inter-/intra-observer variations in disease detection. Moreover, a huge frame rate in video endoscopy is an overhead for the pathological findings of gastroenterologists to observe every frame with a detailed examination. Consequently, there is a huge demand for a reliable computer-aided diagnostic system (CADx) for diagnosing GI tract diseases. In this work, a CADx was proposed for the… More >

  • Open Access

    ARTICLE

    AF-Net: A Medical Image Segmentation Network Based on Attention Mechanism and Feature Fusion

    Guimin Hou1, Jiaohua Qin1,*, Xuyu Xiang1, Yun Tan1, Neal N. Xiong2

    CMC-Computers, Materials & Continua, Vol.69, No.2, pp. 1877-1891, 2021, DOI:10.32604/cmc.2021.017481 - 21 July 2021

    Abstract Medical image segmentation is an important application field of computer vision in medical image processing. Due to the close location and high similarity of different organs in medical images, the current segmentation algorithms have problems with mis-segmentation and poor edge segmentation. To address these challenges, we propose a medical image segmentation network (AF-Net) based on attention mechanism and feature fusion, which can effectively capture global information while focusing the network on the object area. In this approach, we add dual attention blocks (DA-block) to the backbone network, which comprises parallel channels and spatial attention branches, More >

  • Open Access

    ARTICLE

    Feature-Enhanced RefineDet: Fast Detection of Small Objects

    Lei Zhao*, Ming Zhao

    Journal of Information Hiding and Privacy Protection, Vol.3, No.1, pp. 1-8, 2021, DOI:10.32604/jihpp.2021.010065 - 21 April 2021

    Abstract Object detection has been studied for many years. The convolutional neural network has made great progress in the accuracy and speed of object detection. However, due to the low resolution of small objects and the representation of fuzzy features, one of the challenges now is how to effectively detect small objects in images. Existing target detectors for small objects: one is to use high-resolution images as input, the other is to increase the depth of the CNN network, but these two methods will undoubtedly increase the cost of calculation and time-consuming. In this paper, based… More >

  • Open Access

    ARTICLE

    Encoder-Decoder Based Multi-Feature Fusion Model for Image Caption Generation

    Mingyang Duan, Jin Liu*, Shiqi Lv

    Journal on Big Data, Vol.3, No.2, pp. 77-83, 2021, DOI:10.32604/jbd.2021.016674 - 13 April 2021

    Abstract Image caption generation is an essential task in computer vision and image understanding. Contemporary image caption generation models usually use the encoder-decoder model as the underlying network structure. However, in the traditional Encoder-Decoder architectures, only the global features of the images are extracted, while the local information of the images is not well utilized. This paper proposed an Encoder-Decoder model based on fused features and a novel mechanism for correcting the generated caption text. We use VGG16 and Faster R-CNN to extract global and local features in the encoder first. Then, we train the bidirectional More >

  • Open Access

    ARTICLE

    Classification of COVID-19 CT Scans via Extreme Learning Machine

    Muhammad Attique Khan1, Abdul Majid1, Tallha Akram2, Nazar Hussain1, Yunyoung Nam3,*, Seifedine Kadry4, Shui-Hua Wang5, Majed Alhaisoni6

    CMC-Computers, Materials & Continua, Vol.68, No.1, pp. 1003-1019, 2021, DOI:10.32604/cmc.2021.015541 - 22 March 2021

    Abstract Here, we use multi-type feature fusion and selection to predict COVID-19 infections on chest computed tomography (CT) scans. The scheme operates in four steps. Initially, we prepared a database containing COVID-19 pneumonia and normal CT scans. These images were retrieved from the Radiopaedia COVID-19 website. The images were divided into training and test sets in a ratio of 70:30. Then, multiple features were extracted from the training data. We used canonical correlation analysis to fuse the features into single vectors; this enhanced the predictive capacity. We next implemented a genetic algorithm (GA) in which an More >

  • Open Access

    ARTICLE

    Deep Learning-Based Classification of Fruit Diseases: An Application for Precision Agriculture

    Inzamam Mashood Nasir1, Asima Bibi2, Jamal Hussain Shah2, Muhammad Attique Khan1, Muhammad Sharif2, Khalid Iqbal3, Yunyoung Nam4, Seifedine Kadry5,*

    CMC-Computers, Materials & Continua, Vol.66, No.2, pp. 1949-1962, 2021, DOI:10.32604/cmc.2020.012945 - 26 November 2020

    Abstract Agriculture is essential for the economy and plant disease must be minimized. Early recognition of problems is important, but the manual inspection is slow, error-prone, and has high manpower and time requirements. Artificial intelligence can be used to extract fruit color, shape, or texture data, thus aiding the detection of infections. Recently, the convolutional neural network (CNN) techniques show a massive success for image classification tasks. CNN extracts more detailed features and can work efficiently with large datasets. In this work, we used a combined deep neural network and contour feature-based approach to classify fruits… More >

  • Open Access

    ARTICLE

    Deep Feature Extraction and Feature Fusion for Bi-Temporal Satellite Image Classification

    Anju Asokan1, J. Anitha1, Bogdan Patrut2, Dana Danciulescu3, D. Jude Hemanth1,*

    CMC-Computers, Materials & Continua, Vol.66, No.1, pp. 373-388, 2021, DOI:10.32604/cmc.2020.012364 - 30 October 2020

    Abstract Multispectral images contain a large amount of spatial and spectral data which are effective in identifying change areas. Deep feature extraction is important for multispectral image classification and is evolving as an interesting research area in change detection. However, many deep learning framework based approaches do not consider both spatial and textural details into account. In order to handle this issue, a Convolutional Neural Network (CNN) based multi-feature extraction and fusion is introduced which considers both spatial and textural features. This method uses CNN to extract the spatio-spectral features from individual channels and fuse them More >

Displaying 81-90 on page 9 of 100. Per Page