Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (4)
  • Open Access

    ARTICLE

    Deep Learning-Based Decision Support System for Predicting Pregnancy Risk Levels through Cardiotocograph (CTG) Imaging Analysis

    Ali Hasan Dakheel1,*, Mohammed Raheem Mohammed1, Zainab Ali Abd Alhuseen1, Wassan Adnan Hashim2,3

    Intelligent Automation & Soft Computing, Vol.40, pp. 195-220, 2025, DOI:10.32604/iasc.2025.061622 - 28 February 2025

    Abstract The prediction of pregnancy-related hazards must be accurate and timely to safeguard mother and fetal health. This study aims to enhance risk prediction in pregnancy with a novel deep learning model based on a Long Short-Term Memory (LSTM) generator, designed to capture temporal relationships in cardiotocography (CTG) data. This methodology integrates CTG signals with demographic characteristics and utilizes preprocessing techniques such as noise reduction, normalization, and segmentation to create high-quality input for the model. It uses convolutional layers to extract spatial information, followed by LSTM layers to model sequences for superior predictive performance. The overall More >

  • Open Access

    ARTICLE

    Dynamic Multi-Layer Perceptron for Fetal Health Classification Using Cardiotocography Data

    Uddagiri Sirisha1,, Parvathaneni Naga Srinivasu2,3,*, Panguluri Padmavathi4, Seongki Kim5,, Aruna Pavate6, Jana Shafi7, Muhammad Fazal Ijaz8,*

    CMC-Computers, Materials & Continua, Vol.80, No.2, pp. 2301-2330, 2024, DOI:10.32604/cmc.2024.053132 - 15 August 2024

    Abstract Fetal health care is vital in ensuring the health of pregnant women and the fetus. Regular check-ups need to be taken by the mother to determine the status of the fetus’ growth and identify any potential problems. To know the status of the fetus, doctors monitor blood reports, Ultrasounds, cardiotocography (CTG) data, etc. Still, in this research, we have considered CTG data, which provides information on heart rate and uterine contractions during pregnancy. Several researchers have proposed various methods for classifying the status of fetus growth. Manual processing of CTG data is time-consuming and unreliable.… More >

  • Open Access

    ARTICLE

    Federated Machine Learning Based Fetal Health Prediction Empowered with Bio-Signal Cardiotocography

    Muhammad Umar Nasir1, Omar Kassem Khalil2, Karamath Ateeq3, Bassam SaleemAllah Almogadwy4, Muhammad Adnan Khan5, Muhammad Hasnain Azam6, Khan Muhammad Adnan7,*

    CMC-Computers, Materials & Continua, Vol.78, No.3, pp. 3303-3321, 2024, DOI:10.32604/cmc.2024.048035 - 26 March 2024

    Abstract Cardiotocography measures the fetal heart rate in the fetus during pregnancy to ensure physical health because cardiotocography gives data about fetal heart rate and uterine shrinkages which is very beneficial to detect whether the fetus is normal or suspect or pathologic. Various cardiotocography measures infer wrongly and give wrong predictions because of human error. The traditional way of reading the cardiotocography measures is the time taken and belongs to numerous human errors as well. Fetal condition is very important to measure at numerous stages and give proper medications to the fetus for its well-being. In… More >

  • Open Access

    ARTICLE

    Ensemble Learning for Fetal Health Classification

    Mesfer Al Duhayyim1,*, Sidra Abbas2, Abdullah Al Hejaili3, Natalia Kryvinska4,*, Ahmad Almadhor5, Huma Mughal6

    Computer Systems Science and Engineering, Vol.47, No.1, pp. 823-842, 2023, DOI:10.32604/csse.2023.037488 - 26 May 2023

    Abstract : Cardiotocography (CTG) represents the fetus’s health inside the womb during labor. However, assessment of its readings can be a highly subjective process depending on the expertise of the obstetrician. Digital signals from fetal monitors acquire parameters (i.e., fetal heart rate, contractions, acceleration). Objective:: This paper aims to classify the CTG readings containing imbalanced healthy, suspected, and pathological fetus readings. Method:: We perform two sets of experiments. Firstly, we employ five classifiers: Random Forest (RF), Adaptive Boosting (AdaBoost), Categorical Boosting (CatBoost), Extreme Gradient Boosting (XGBoost), and Light Gradient Boosting Machine (LGBM) without over-sampling to classify CTG… More >

Displaying 1-10 on page 1 of 4. Per Page