Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (285)
  • Open Access

    ARTICLE

    Stress Distribution in an Infinite Body Containing Two Neighboring Locally Curved Nanofibers

    Surkay D. Akbarov1,2, Resat Kosker3, Nihan T. Cinar3

    CMC-Computers, Materials & Continua, Vol.21, No.2, pp. 119-146, 2011, DOI:10.3970/cmc.2011.021.119

    Abstract In the present paper, the stress distribution in an infinite elastic body containing two neighboring nanofibers is studied. It is assumed that the midlines of the fibers are in the same plane. With respect to the location of the fibers according to each other the co-phase and anti-phase curving cases are considered. At infinity uniformly distributed normal forces act in the direction of the nanofibers, location. The investigations are carried out in the framework of the piecewise homogeneous body model with the use of the three-dimensional geometrically non-linear exact equations of the theory of elasticity. The normal and shear self-equilibrated… More >

  • Open Access

    ARTICLE

    The Effect of the Geometrical Non-Linearity on the Stress Distribution in the Infinite Elastic Body with a Periodically Curved Row of Fibers

    Surkay D. Akbarov1,2, Resat Kosker3, Yasemen Ucan3

    CMC-Computers, Materials & Continua, Vol.17, No.2, pp. 77-102, 2010, DOI:10.3970/cmc.2010.017.077

    Abstract In the framework of the piecewise homogeneous body model with the use of the three-dimensional geometrically non-linear exact equations of the theory of elasticity, the method for determination of the stress-strain state in the infinite body containing periodically located row of periodically curved fibers is developed. It is assumed that the midlines of the fibers are in the same plane. With respect to the location of the fibers according to each other the sinphase and antiphase curving cases are considered. Numerical results on the effect of the geometrical non-linearity to the values of the self balanced shear and normal stresses… More >

  • Open Access

    ARTICLE

    Invariant Based Transversely-Isotropic Material and Failure Model for Fiber-Reinforced Polymers

    M. Vogler1, G. Ernst1, R. Rolfes1

    CMC-Computers, Materials & Continua, Vol.16, No.1, pp. 25-50, 2010, DOI:10.3970/cmc.2010.016.025

    Abstract In this article, a constitutive formulation of a transversely-isotropic material and failure model for fiber-reinforced polymers is presented comprising pre-failure material nonlinearities, a novel invariant based quadratic failure criterion (IQC) as well as post failure material softening. The failure surface of the IQ criterion is assumed to take the influence of triaxiality on fracture into account. Further, a distinction between fiber failure and inter-fiber failure is conducted. Material softening is governed by a fracture energy formulation and the introduction of an internal length. The constitutive model is implemented into a programming user interface of the commercial finite element program Abaqus.… More >

  • Open Access

    ARTICLE

    A Computational Approach to Investigate Electromagnetic Shielding Effectiveness of Steel Fiber-Reinforced Mortar

    S.H. Kwon1, H.K. Lee2

    CMC-Computers, Materials & Continua, Vol.12, No.3, pp. 197-222, 2009, DOI:10.3970/cmc.2009.012.197

    Abstract The electromagnetic shielding effectiveness of steel fiber-reinforced mortar was numerically examined in this study. A series of numerical analysis on twenty-seven types of specimens of different diameters, lengths, and volume fractions of fibers were conducted using the FE program HFSS to investigate the effect of the dimensions of steel fibers and the amount of fibers added to the mortar on the shielding effectiveness. S-parameters of some specimens were experimentally measured by the free space method and the experimentally measured S-parameters were compared with those computed in order to verify the present numerical analysis method. It was found that smaller diameters… More >

  • Open Access

    ARTICLE

    A New Method of Controlling Shrinkage Cracking in Repaired Concrete Structures Using an Interface Layer of Carbon Fiber Reinforced Cement Mortar

    Shen Yubin1, Xie Huicai1,2, Den Wei1

    CMC-Computers, Materials & Continua, Vol.3, No.2, pp. 49-54, 2006, DOI:10.3970/cmc.2006.003.049

    Abstract Bonding an overlay of new concrete onto the damaged concrete is a usual repair method. Because of the different shrinkage rate of the new and old concrete, restrained shrinkage cracks will appear in the new concrete. The cracks will reduce durability and strength of the repaired structure. A new repair method using an interface layer of carbon fiber reinforced cement mortar between new and old concrete was developed in this paper. The new method was found to be very effective in reducing shrinkage cracking of repaired beams and slabs. Comparing with normal repaired beams, the maximum observed width of the… More >

Displaying 281-290 on page 29 of 285. Per Page