Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (34)
  • Open Access

    REVIEW

    Effect of Mechanical Forces on the Behavior of Dental Stem Cells: A Scoping Review of In-Vitro Studies

    Maryam Rezai Rad1, Sadra Mohaghegh2, Farnaz Kouhestani3, Saeed Reza Motamedian4,*

    Molecular & Cellular Biomechanics, Vol.18, No.2, pp. 51-67, 2021, DOI:10.32604/mcb.2021.015136

    Abstract This article is a scoping review of the studies that assessed the effect of mechanical forces on the behavior of dental stem cells (DSCs). PubMed and Scopus searches were done for in-vitro studies evaluating the effect of tension, hydrostatic pressure (i.e., the pressure applied through an incompressible fluid), compression, simulated microgravity, and vibration on DSCs. The following factors were analyzed: osteogenic/odontogenic differentiation, proliferation, adhesion and migration. Articles were reviewed according to the Preferred Reporting Items for Systematic Reviews extension for scoping reviews (PRISMA-ScR) guideline. Included studies were evaluated based on the modified Consolidated Standards of Reporting Trials (CONSORT). A total… More >

  • Open Access

    ARTICLE

    A Numerical Study on the Mechanisms Producing Forces on Cylinders Interacting with Stratified Shear Environments

    Yin Wang1,*, Lingling Wang2, Yong Ji1, Zhicheng Xi1, Wenwen Zhang1

    FDMP-Fluid Dynamics & Materials Processing, Vol.17, No.2, pp. 471-485, 2021, DOI:10.32604/fdmp.2021.014652

    Abstract A three dimensional (3D) numerical wave flume is used to investigate carefully the ISWs (Internal solitary wave) forces acting on cylinders interacting with a stratified shear environment. Using the Large-Eddy Simulation (LES) approach and analyzing the distribution of shear stress and pressure along the surface of the cylinder, the differential pressure resistance and the viscous force are obtained. The method of multiple linear regression analysis is adopted and a comprehensive influence coefficient is determined accordingly to account for the dimensionless forces acting on the cylinder. Results show that the differential pressure resistance on a square cylinder is 1.5 times higher… More >

  • Open Access

    ARTICLE

    Research on the Best Shooting State Based on the “Three Forces” Model

    Xuguang Liu1, Ruqing Zhao2, Qifei Chen2, Ming Shi3, Ziling Xing2, Yanan Zhang4,*

    Journal on Big Data, Vol.2, No.2, pp. 85-93, 2020, DOI:10.32604/jbd.2020.013845

    Abstract The shooting state during shooting refers to the basketball’s shooting speed, shooting angle and the ball’s rotation speed. The basketball flight path is also related to these factors. In this paper, based on the three forces of Gravity, Air Resistance and Magnus Force, the “Three Forces” model is established, the Kinetic equations are derived, the basketball flight trajectory is solved by simulation, and the best shot state when shooting is obtained through the shooting percentage. Compared with the “Single Force” model that only considers Gravity, the shooting percentage of the “Three Forces” model is higher. The reason is that the… More >

  • Open Access

    ABSTRACT

    Mapping Single Platelet Forces Directly by Fluorescence Imaging

    Yongliang Wang1, Dana N LeVine2, Xuefeng Wang1,3,*

    Molecular & Cellular Biomechanics, Vol.16, Suppl.2, pp. 105-105, 2019, DOI:10.32604/mcb.2019.07872

    Abstract Platelets are important blood cells mediating hemostasis and thrombosis. Integrin tension plays a critical role in most platelet functions, such as adhesion, activation, aggregation and contraction. Visualizing and measuring single platelet forces are desired in both research and diagnosis of platelet functions. Here we developed integrative tension sensor (ITS) which converts integrin molecular tension to fluorescent signal, therefore enabling cellular force mapping directly by fluorescence imaging. With the ITS, we mapped integrin-transmitted platelet force at 0.4 µm resolution during platelet adhesion and contraction. We found that platelet force distribution has strong polarization which is sensitive to treatment with anti-platelet drugs,… More >

  • Open Access

    ARTICLE

    On Axisymmetric Longitudinal Wave Propagation in Double-Walled Carbon Nanotubes

    S.D. Akbarov1,2

    CMC-Computers, Materials & Continua, Vol.33, No.1, pp. 63-85, 2013, DOI:10.3970/cmc.2013.033.063

    Abstract An attempt is made into the investigation of longitudinal axisymmetric wave propagation in the DWCNT with the use of the exact equations of motion of the linear theory of elastodynamics. The DWCNT is modeled as concentricallynested two circular hollow cylinders between which there is free space. The difference in the radial displacements of these cylinders is coupled with the van der Waals forces and it is assumed that full slipping conditions occur on the inner surface of the outer tube and on the outer surface of the inner tube. Numerical results on the influence of the problem parameters such as… More >

  • Open Access

    ARTICLE

    Some Factors That May Determine the Frequency Response of Cells and Tissue to Applied Electrical and Mechanical Forces

    F. X. Hart1

    Molecular & Cellular Biomechanics, Vol.3, No.4, pp. 235-235, 2006, DOI:10.32604/mcb.2006.003.235

    Abstract This article has no abstract. More >

  • Open Access

    ARTICLE

    Micropost Force Sensor Array (MFSA) for Measuring Cell Traction Forces

    B. Li1, L. Xie1, Z. C. Starr1, Z. Yang1, J. H-C. Wang1*

    Molecular & Cellular Biomechanics, Vol.3, No.4, pp. 195-196, 2006, DOI:10.32604/mcb.2006.003.195

    Abstract This article has no abstract. More >

  • Open Access

    ARTICLE

    Forces Required to Initiate Membrane Tether Extrusion from Cell Surface Depend on Cell Type But Not on the Surface Molecule

    Warren D. Marcus1,2, Rodger P. McEver3, Cheng Zhu1

    Molecular & Cellular Biomechanics, Vol.1, No.4, pp. 245-252, 2004, DOI:10.3970/mcb.2004.001.245

    Abstract When a cell adhered to another cell or substratum via surface proteins is forced to detach, lipid membrane tethers are often extruded from the cell surface before the protein bond dissociates. For example, during the inflammatory reaction leukocytes roll on the surface of activated endothelial cells. The rolling adhesion is mediated by interactions of selectins with their ligands, e.g., P-selectin glycoprotein ligand (PSGL)-1, which extrudes membrane tethers from the surfaces of both leukocytes and endothelial cells. Membrane tether extrusion has been suggested to regulate leukocyte rolling. Here we examine several factors that may affect forces required to initiate membrane tethers,… More >

  • Open Access

    ABSTRACT

    3D finite element analysis of hot ultrasonically assisted turning of modern alloys

    R. Muhammad*, A. Maurotto, M. Demiral, A. Roy and V.V. Silberschmidt

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.19, No.3, pp. 95-96, 2011, DOI:10.3970/icces.2011.019.095

    Abstract Analysis of the cutting process in machining of modern engineering materials (Ti- and Ni-based alloys), which are hard-to-cut materials, is a challenge that needs to be addressed. Machining of these alloys with conventional techniques is difficult and often results in tool failure due to the high cutting forces imposed on the tool. In a machining operation, cutting forces causes severe deformations in the proximity of the cutting edge, producing high stresses, strain, strain-rates and temperatures in the workpiece.
    Ultrasonically assisted turning (UAT) is an advanced machining process, which has shown several advantages especially in the machining of high strength… More >

  • Open Access

    ABSTRACT

    Configurational Forces in Three-Dimensional Crack Loading Analyses and Crack Growth Simulations

    Kevin Schmitz1,*, Paul Judt1, Andreas Ricoeur1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.21, No.1, pp. 12-12, 2019, DOI:10.32604/icces.2019.05164

    Abstract In order to evaluate cracks in three-dimensional (3D) specimens, it is necessary to perform crack loading analyses. Loading quantities are calculated, employing the distribution of stress and strain in the vicinity of the crack front. In thin planar structures with plane mode I/II loading, analyses at simplified two-dimensional boundary value problems provide sufficiently accurate loading quantities. However, for an increasing thickness or presence of mode III loading, the plane assumptions in general lose their validity. Three-dimensional structures exhibit spatial stresses, leading to a non-constant stress distribution along the crack front and to non-uniform crack front loading, respectively. As a result,… More >

Displaying 11-20 on page 2 of 34. Per Page