Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (34)
  • Open Access


    Do tensile and shear forces exerted on cells influence mechanotransduction through stored energy considerations?


    BIOCELL, Vol.48, No.4, pp. 525-540, 2024, DOI:10.32604/biocell.2024.047965

    Abstract All tissues in the body are subjected externally to gravity and internally by collagen fibril and cellular retractive forces that create stress and energy equilibrium required for homeostasis. Mechanotransduction involves mechanical work (force through a distance) and energy storage as kinetic and potential energy. This leads to changes in cell mitosis or apoptosis and the synthesis or loss of tissue components. It involves the application of energy directly to cells through integrin-mediated processes, cell-cell connections, stretching of the cell cytoplasm, and activation of the cell nucleus via yes-associated protein (YAP) and transcriptional coactivator with PDZ-motif… More >

  • Open Access


    The Instability Mechanism of Moving Contact Line on the Surface of Soluble Solids

    Xudong Chen1,2, Quanzi Yuan1,2,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.27, No.4, pp. 1-1, 2023, DOI:10.32604/icces.2023.09318

    Abstract The wetting and instability of liquids on the surface of soluble solids is a problem of interface stability at multiple scales, which is coupled by mechanics and chemistry. This problem is crucial to application fields such as micro-nano processing and microscopic observation. In this work, the instability process of moving contact lines on the surfaces of soluble solids is investigated in experiments, theories, and simulations. Based on the unique shapes of the surfaces of soluble solids caused by instability in experiments, the concept of pagoda instability is proposed. Then the Cahn-Hilliard interfaces are developed to… More >

  • Open Access



    N.Vijayaa,* , P. Krishna Jyothib, A. Anupamac, R. Leelavathid, K. Ambicae

    Frontiers in Heat and Mass Transfer, Vol.17, pp. 1-8, 2021, DOI:10.5098/hmt.17.23

    Abstract The main intention of this study is to explore Maxwell fluid under the influence of thermophoresis and buoyancy forces induced by exponentially stretching sheet under chemical reaction. Cattaneo –Christov heat flux model is used to explore heat and mass characteristics with variable magnetic field, and chemical reaction. Variables of similarity were induced to transmute partial differential equations into dimensionless equations and are resolved numerically by elegant method bvp 4c. Behavior of various critical parameters on velocity, temperature and concentrations is graphically presented and discussed. Non Newtonian nature of the Maxwell fluid is clearly explored by More >

  • Open Access


    Lower Limb Muscle Forces in Table Tennis Footwork during Topspin Forehand Stroke Based on the OpenSim Musculoskeletal Model: A Pilot Study

    Yuqi He1,2,3, Shirui Shao1, Gusztáv Fekete3, Xiaoyi Yang1, Xuanzhen Cen1,4, Yang Song1,4, Dong Sun1,*, Yaodong Gu1,*

    Molecular & Cellular Biomechanics, Vol.19, No.4, pp. 221-235, 2022, DOI:10.32604/mcb.2022.027285

    Abstract Introduction: Footwork is one of the training contents that table tennis players and coaches focus on. This study aimed to gain a thorough understanding of the muscle activity of the table tennis footwork and creating a musculoskeletal model to investigate the muscle forces, joint kinematic, and joint kinetic characteristics of the footwork during topspin forehand stroke. Methods: Six male table tennis athletes (height: 171.98 ± 4.97 cm; weight: 68.77 ± 7.86 kg; experience: 10.67 ± 1.86 years; age: 22.50 ± 1.64 years) performed chasse step and one-step footwork to return the ball from the coach by… More >

  • Open Access


    Biomechanics of transendothelial migration by cancer cells


    BIOCELL, Vol.46, No.11, pp. 2381-2386, 2022, DOI:10.32604/biocell.2022.021368

    Abstract Cancer metastasis is still a major social issue with limited knowledge of the formation of tumors and their growth. In addition the formation of metastases is very difficult to understand, since it involves very complex physical mechanisms such as cellular interactions and cell rheology, which are flow-dependent. Previous studies investigated transendothelial migration using sophisticated techniques such as microfluidics, traction force microscopy (TFM) or Atomic Force Microscopy (AFM), combined with physical modeling. Here we summarize recent results and suggest new ways to investigate the precise mechanisms used by cancer cells to undergo transendothelial migration. More >

  • Open Access


    A Meshless Method for Retrieving Nonlinear Large External Forces on Euler-Bernoulli Beams

    Chih-Wen Chang*

    CMC-Computers, Materials & Continua, Vol.73, No.1, pp. 433-451, 2022, DOI:10.32604/cmc.2022.027021

    Abstract We retrieve unknown nonlinear large space-time dependent forces burdened with the vibrating nonlinear Euler-Bernoulli beams under varied boundary data, comprising two-end fixed, cantilevered, clamped-hinged, and simply supported conditions in this study. Even though some researchers used several schemes to overcome these forward problems of Euler-Bernoulli beams; however, an effective numerical algorithm to solve these inverse problems is still not available. We cope with the homogeneous boundary conditions, initial data, and final time datum for each type of nonlinear beam by employing a variety of boundary shape functions. The unknown nonlinear large external force can be… More >

  • Open Access


    Weakly Singular Symmetric Galerkin Boundary Element Method for Fracture Analysis of Three-Dimensional Structures Considering Rotational Inertia and Gravitational Forces

    Shuangxin He1, Chaoyang Wang1, Xuan Zhou1,*, Leiting Dong1,*, Satya N. Atluri2

    CMES-Computer Modeling in Engineering & Sciences, Vol.131, No.3, pp. 1857-1882, 2022, DOI:10.32604/cmes.2022.019160

    Abstract The Symmetric Galerkin Boundary Element Method is advantageous for the linear elastic fracture and crackgrowth analysis of solid structures, because only boundary and crack-surface elements are needed. However, for engineering structures subjected to body forces such as rotational inertia and gravitational loads, additional domain integral terms in the Galerkin boundary integral equation will necessitate meshing of the interior of the domain. In this study, weakly-singular SGBEM for fracture analysis of three-dimensional structures considering rotational inertia and gravitational forces are developed. By using divergence theorem or alternatively the radial integration method, the domain integral terms caused More >

  • Open Access


    Optimization of the Drag Forces of Shell Janus Micromotor: A Study Based on Hydrodynamical Analysis and Numerical Simulation

    Qiang Wang, Zhen Wang*

    CMES-Computer Modeling in Engineering & Sciences, Vol.130, No.1, pp. 443-462, 2022, DOI:10.32604/cmes.2022.015717

    Abstract Micromotors are widely used in cell operation, drug delivery and environmental decontamination due to their small size, low energy consumption and large propelling power. Compared to traditional Janus micromotor, the shell Janus micromotor has better motion performance. However, the structural optimization of its motion performance is still unclear. The main factor restricting the motion performance of shell Janus micromotors is the drag forces. In the current work, theoretical analysis and numerical simulation were applied to analyze the drag forces of shell Janus micromotors. This study aims to design the optimum structure of shell Janus micromotors More >

  • Open Access


    Mechanotransduction-The relationship between gravity, cells and tensile loading in extracellular matrix


    BIOCELL, Vol.46, No.2, pp. 297-299, 2022, DOI:10.32604/biocell.2022.017406

    Abstract Gravity plays a central role in vertebrate development and evolution. Mechanotransduction involves the tensile tethering of veins and arteries, connections between the epidermis and dermis in skin, tensile stress concentrations that occur at tissue interfaces, cell-cell interactions, cell-collagen fiber stress transfer in extracellular matrix and fluid shear flow. While attention in the past has been directed at understanding the myriad of biochemical players associated with mechanotransduction pathways, less attention has been focused on determining the tensile mechanical behavior of tissues in vivo. Fibroblasts sit on the surface of collagen fibers in living skin and exert a More >

  • Open Access


    A New Estimation of Nonlinear Contact Forces of Railway Vehicle

    Khakoo Mal1,2, Imtiaz Hussain Kalwar3, Khurram Shaikh2, Tayab Din Memon2,4, Bhawani Shankar Chowdhry1, Kashif Nisar5,*, Manoj Gupta6

    Intelligent Automation & Soft Computing, Vol.28, No.3, pp. 823-841, 2021, DOI:10.32604/iasc.2021.016990


    The core part of any study of rolling stock behavior is the wheel-track interaction patch because the forces produced at the wheel-track interface govern the dynamic behavior of the whole railway vehicle. It is significant to know the nature of the contact force to design more effective vehicle dynamics control systems and condition monitoring systems. However, it is hard to find the status of this adhesion force due to its complexity, highly non-linear nature, and also affected with an unpredictable operation environment. The purpose of this paper is to develop a model-based estimation technique using the

    More >

Displaying 1-10 on page 1 of 34. Per Page