Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (181)
  • Open Access

    ARTICLE

    Hybridized Intelligent Neural Network Optimization Model for Forecasting Prices of Rubber in Malaysia

    Shehab Abdulhabib Alzaeemi1, Saratha Sathasivam2,*, Majid Khan bin Majahar Ali2, K. G. Tay1, Muraly Velavan3

    Computer Systems Science and Engineering, Vol.47, No.2, pp. 1471-1491, 2023, DOI:10.32604/csse.2023.037366

    Abstract Rubber producers, consumers, traders, and those who are involved in the rubber industry face major risks of rubber price fluctuations. As a result, decision-makers are required to make an accurate estimation of the price of rubber. This paper aims to propose hybrid intelligent models, which can be utilized to forecast the price of rubber in Malaysia by employing monthly Malaysia’s rubber pricing data, spanning from January 2016 to March 2021. The projected hybrid model consists of different algorithms with the symbolic Radial Basis Functions Neural Network k-Satisfiability Logic Mining (RBFNN-kSAT). These algorithms, including Grey Wolf… More >

  • Open Access

    REVIEW

    Recent Advances of Deep Learning in Geological Hazard Forecasting

    Jiaqi Wang1, Pengfei Sun1, Leilei Chen2, Jianfeng Yang3, Zhenghe Liu1, Haojie Lian1,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.137, No.2, pp. 1381-1418, 2023, DOI:10.32604/cmes.2023.023693

    Abstract Geological hazard is an adverse geological condition that can cause loss of life and property. Accurate prediction and analysis of geological hazards is an important and challenging task. In the past decade, there has been a great expansion of geohazard detection data and advancement in data-driven simulation techniques. In particular, great efforts have been made in applying deep learning to predict geohazards. To understand the recent progress in this field, this paper provides an overview of the commonly used data sources and deep neural networks in the prediction of a variety of geological hazards. More >

  • Open Access

    ARTICLE

    Railway Passenger Flow Forecasting by Integrating Passenger Flow Relationship and Spatiotemporal Similarity

    Song Yu*, Aiping Luo, Xiang Wang

    Intelligent Automation & Soft Computing, Vol.37, No.2, pp. 1877-1893, 2023, DOI:10.32604/iasc.2023.039132

    Abstract Railway passenger flow forecasting can help to develop sensible railway schedules, make full use of railway resources, and meet the travel demand of passengers. The structure of passenger flow in railway networks and the spatiotemporal relationship of passenger flow among stations are two distinctive features of railway passenger flow. Most of the previous studies used only a single feature for prediction and lacked correlations, resulting in suboptimal performance. To address the above-mentioned problem, we proposed the railway passenger flow prediction model called Flow-Similarity Attention Graph Convolutional Network (F-SAGCN). First, we constructed the passenger flow relations… More >

  • Open Access

    ARTICLE

    Forecasting Energy Consumption Using a Novel Hybrid Dipper Throated Optimization and Stochastic Fractal Search Algorithm

    Doaa Sami Khafaga1, El-Sayed M. El-kenawy2, Amel Ali Alhussan1,*, Marwa M. Eid3

    Intelligent Automation & Soft Computing, Vol.37, No.2, pp. 2117-2132, 2023, DOI:10.32604/iasc.2023.038811

    Abstract The accurate prediction of energy consumption has effective role in decision making and risk management for individuals and governments. Meanwhile, the accurate prediction can be realized using the recent advances in machine learning and predictive models. This research proposes a novel approach for energy consumption forecasting based on a new optimization algorithm and a new forecasting model consisting of a set of long short-term memory (LSTM) units. The proposed optimization algorithm is used to optimize the parameters of the LSTM-based model to boost its forecasting accuracy. This optimization algorithm is based on the recently emerged… More >

  • Open Access

    ARTICLE

    Flow Direction Level Traffic Flow Prediction Based on a GCN-LSTM Combined Model

    Fulu Wei1, Xin Li1, Yongqing Guo1,*, Zhenyu Wang2, Qingyin Li1, Xueshi Ma3

    Intelligent Automation & Soft Computing, Vol.37, No.2, pp. 2001-2018, 2023, DOI:10.32604/iasc.2023.035799

    Abstract Traffic flow prediction plays an important role in intelligent transportation systems and is of great significance in the applications of traffic control and urban planning. Due to the complexity of road traffic flow data, traffic flow prediction has been one of the challenging tasks to fully exploit the spatiotemporal characteristics of roads to improve prediction accuracy. In this study, a combined flow direction level traffic flow prediction graph convolutional network (GCN) and long short-term memory (LSTM) model based on spatiotemporal characteristics is proposed. First, a GCN model is employed to capture the topological structure of… More >

  • Open Access

    ARTICLE

    Statistical Time Series Forecasting Models for Pandemic Prediction

    Ahmed ElShafee1, Walid El-Shafai2,3, Abeer D. Algarni4,*, Naglaa F. Soliman4, Moustafa H. Aly5

    Computer Systems Science and Engineering, Vol.47, No.1, pp. 349-374, 2023, DOI:10.32604/csse.2023.037408

    Abstract COVID-19 has significantly impacted the growth prediction of a pandemic, and it is critical in determining how to battle and track the disease progression. In this case, COVID-19 data is a time-series dataset that can be projected using different methodologies. Thus, this work aims to gauge the spread of the outbreak severity over time. Furthermore, data analytics and Machine Learning (ML) techniques are employed to gain a broader understanding of virus infections. We have simulated, adjusted, and fitted several statistical time-series forecasting models, linear ML models, and nonlinear ML models. Examples of these models are… More >

  • Open Access

    ARTICLE

    CBOE Volatility Index Forecasting under COVID-19: An Integrated BiLSTM-ARIMA-GARCH Model

    Min Hyung Park1, Dongyan Nan2,3, Yerin Kim1, Jang Hyun Kim1,2,3,*

    Computer Systems Science and Engineering, Vol.47, No.1, pp. 121-134, 2023, DOI:10.32604/csse.2023.033247

    Abstract After the outbreak of COVID-19, the global economy entered a deep freeze. This observation is supported by the Volatility Index (VIX), which reflects the market risk expected by investors. In the current study, we predicted the VIX using variables obtained from the sentiment analysis of data on Twitter posts related to the keyword “COVID-19,” using a model integrating the bidirectional long-term memory (BiLSTM), autoregressive integrated moving average (ARIMA) algorithm, and generalized autoregressive conditional heteroskedasticity (GARCH) model. The Linguistic Inquiry and Word Count (LIWC) program and Valence Aware Dictionary for Sentiment Reasoning (VADER) model were utilized More >

  • Open Access

    ARTICLE

    Short-Term Prediction of Photovoltaic Power Generation Based on LMD Permutation Entropy and Singular Spectrum Analysis

    Wenchao Ma*

    Energy Engineering, Vol.120, No.7, pp. 1685-1699, 2023, DOI:10.32604/ee.2023.025404

    Abstract The power output state of photovoltaic power generation is affected by the earth's rotation and solar radiation intensity. On the one hand, its output sequence has daily periodicity; on the other hand, it has discrete randomness. With the development of new energy economy, the proportion of photovoltaic energy increased accordingly. In order to solve the problem of improving the energy conversion efficiency in the grid-connected optical network and ensure the stability of photovoltaic power generation, this paper proposes the short-term prediction of photovoltaic power generation based on the improved multi-scale permutation entropy, local mean decomposition… More >

  • Open Access

    ARTICLE

    Forecasting the Municipal Solid Waste Using GSO-XGBoost Model

    Vaishnavi Jayaraman1, Arun Raj Lakshminarayanan1,*, Saravanan Parthasarathy1, A. Suganthy2

    Intelligent Automation & Soft Computing, Vol.37, No.1, pp. 301-320, 2023, DOI:10.32604/iasc.2023.037823

    Abstract Waste production rises in tandem with population growth and increased utilization. The indecorous disposal of waste paves the way for huge disaster named as climate change. The National Environment Agency (NEA) of Singapore oversees the sustainable management of waste across the country. The three main contributors to the solid waste of Singapore are paper and cardboard (P&C), plastic, and food scraps. Besides, they have a negligible rate of recycling. In this study, Machine Learning techniques were utilized to forecast the amount of garbage also known as waste audits. The waste audit would aid the authorities… More >

  • Open Access

    ARTICLE

    Deep Learning Based Energy Consumption Prediction on Internet of Things Environment

    S. Balaji*, S. Karthik

    Intelligent Automation & Soft Computing, Vol.37, No.1, pp. 727-743, 2023, DOI:10.32604/iasc.2023.037409

    Abstract The creation of national energy strategy cannot proceed without accurate projections of future electricity consumption; this is because EC is intimately tied to other forms of energy, such as oil and natural gas. For the purpose of determining and bettering overall energy consumption, there is an urgent requirement for accurate monitoring and calculation of EC at the building level using cutting-edge technology such as data analytics and the internet of things (IoT). Soft computing is a subset of AI that tries to design procedures that are more accurate and reliable, and it has proven to… More >

Displaying 21-30 on page 3 of 181. Per Page