Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (196)
  • Open Access

    ARTICLE

    Weather-Driven Solar Power Forecasting Using D-Informer: Enhancing Predictions with Climate Variables

    Chenglian Ma1, Rui Han1, Zhao An2,*, Tianyu Hu2, Meizhu Jin2

    Energy Engineering, Vol.121, No.5, pp. 1245-1261, 2024, DOI:10.32604/ee.2024.046644 - 30 April 2024

    Abstract Precise forecasting of solar power is crucial for the development of sustainable energy systems. Contemporary forecasting approaches often fail to adequately consider the crucial role of weather factors in photovoltaic (PV) power generation and encounter issues such as gradient explosion or disappearance when dealing with extensive time-series data. To overcome these challenges, this research presents a cutting-edge, multi-stage forecasting method called D-Informer. This method skillfully merges the differential transformation algorithm with the Informer model, leveraging a detailed array of meteorological variables and historical PV power generation records. The D-Informer model exhibits remarkable superiority over competing… More > Graphic Abstract

    Weather-Driven Solar Power Forecasting Using D-Informer: Enhancing Predictions with Climate Variables

  • Open Access

    ARTICLE

    The Influence of Air Pollution Concentrations on Solar Irradiance Forecasting Using CNN-LSTM-mRMR Feature Extraction

    Ramiz Gorkem Birdal*

    CMC-Computers, Materials & Continua, Vol.78, No.3, pp. 4015-4028, 2024, DOI:10.32604/cmc.2024.048324 - 26 March 2024

    Abstract Maintaining a steady power supply requires accurate forecasting of solar irradiance, since clean energy resources do not provide steady power. The existing forecasting studies have examined the limited effects of weather conditions on solar radiation such as temperature and precipitation utilizing convolutional neural network (CNN), but no comprehensive study has been conducted on concentrations of air pollutants along with weather conditions. This paper proposes a hybrid approach based on deep learning, expanding the feature set by adding new air pollution concentrations, and ranking these features to select and reduce their size to improve efficiency. In… More >

  • Open Access

    ARTICLE

    TSCND: Temporal Subsequence-Based Convolutional Network with Difference for Time Series Forecasting

    Haoran Huang, Weiting Chen*, Zheming Fan

    CMC-Computers, Materials & Continua, Vol.78, No.3, pp. 3665-3681, 2024, DOI:10.32604/cmc.2024.048008 - 26 March 2024

    Abstract Time series forecasting plays an important role in various fields, such as energy, finance, transport, and weather. Temporal convolutional networks (TCNs) based on dilated causal convolution have been widely used in time series forecasting. However, two problems weaken the performance of TCNs. One is that in dilated casual convolution, causal convolution leads to the receptive fields of outputs being concentrated in the earlier part of the input sequence, whereas the recent input information will be severely lost. The other is that the distribution shift problem in time series has not been adequately solved. To address… More >

  • Open Access

    ARTICLE

    Automated Machine Learning Algorithm Using Recurrent Neural Network to Perform Long-Term Time Series Forecasting

    Ying Su1, Morgan C. Wang1, Shuai Liu2,*

    CMC-Computers, Materials & Continua, Vol.78, No.3, pp. 3529-3549, 2024, DOI:10.32604/cmc.2024.047189 - 26 March 2024

    Abstract Long-term time series forecasting stands as a crucial research domain within the realm of automated machine learning (AutoML). At present, forecasting, whether rooted in machine learning or statistical learning, typically relies on expert input and necessitates substantial manual involvement. This manual effort spans model development, feature engineering, hyper-parameter tuning, and the intricate construction of time series models. The complexity of these tasks renders complete automation unfeasible, as they inherently demand human intervention at multiple junctures. To surmount these challenges, this article proposes leveraging Long Short-Term Memory, which is the variant of Recurrent Neural Networks, harnessing… More >

  • Open Access

    ARTICLE

    Investigating Periodic Dependencies to Improve Short-Term Load Forecasting

    Jialin Yu1,*, Xiaodi Zhang2, Qi Zhong1, Jian Feng1

    Energy Engineering, Vol.121, No.3, pp. 789-806, 2024, DOI:10.32604/ee.2023.043299 - 27 February 2024

    Abstract With a further increase in energy flexibility for customers, short-term load forecasting is essential to provide benchmarks for economic dispatch and real-time alerts in power grids. The electrical load series exhibit periodic patterns and share high associations with metrological data. However, current studies have merely focused on point-wise models and failed to sufficiently investigate the periodic patterns of load series, which hinders the further improvement of short-term load forecasting accuracy. Therefore, this paper improved Autoformer to extract the periodic patterns of load series and learn a representative feature from deep decomposition and reconstruction. In addition, More >

  • Open Access

    ARTICLE

    A Measurement Study of the Ethereum Underlying P2P Network

    Mohammad Z. Masoud1, Yousef Jaradat1, Ahmad Manasrah2, Mohammad Alia3, Khaled Suwais4,*, Sally Almanasra4

    CMC-Computers, Materials & Continua, Vol.78, No.1, pp. 515-532, 2024, DOI:10.32604/cmc.2023.044504 - 30 January 2024

    Abstract This work carried out a measurement study of the Ethereum Peer-to-Peer (P2P) network to gain a better understanding of the underlying nodes. Ethereum was applied because it pioneered distributed applications, smart contracts, and Web3. Moreover, its application layer language “Solidity” is widely used in smart contracts across different public and private blockchains. To this end, we wrote a new Ethereum client based on Geth to collect Ethereum node information. Moreover, various web scrapers have been written to collect nodes’ historical data from the Internet Archive and the Wayback Machine project. The collected data has been… More >

  • Open Access

    ARTICLE

    Deep Autoencoder-Based Hybrid Network for Building Energy Consumption Forecasting

    Noman Khan1,2, Samee Ullah Khan1,2, Sung Wook Baik1,2,*

    Computer Systems Science and Engineering, Vol.48, No.1, pp. 153-173, 2024, DOI:10.32604/csse.2023.039407 - 26 January 2024

    Abstract Energy management systems for residential and commercial buildings must use an appropriate and efficient model to predict energy consumption accurately. To deal with the challenges in power management, the short-term Power Consumption (PC) prediction for household appliances plays a vital role in improving domestic and commercial energy efficiency. Big data applications and analytics have shown that data-driven load forecasting approaches can forecast PC in commercial and residential sectors and recognize patterns of electric usage in complex conditions. However, traditional Machine Learning (ML) algorithms and their features engineering procedure emphasize the practice of inefficient and ineffective… More >

  • Open Access

    ARTICLE

    CALTM: A Context-Aware Long-Term Time-Series Forecasting Model

    Canghong Jin1,*, Jiapeng Chen1, Shuyu Wu1, Hao Wu2, Shuoping Wang1, Jing Ying3

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.1, pp. 873-891, 2024, DOI:10.32604/cmes.2023.043230 - 30 December 2023

    Abstract Time series data plays a crucial role in intelligent transportation systems. Traffic flow forecasting represents a precise estimation of future traffic flow within a specific region and time interval. Existing approaches, including sequence periodic, regression, and deep learning models, have shown promising results in short-term series forecasting. However, forecasting scenarios specifically focused on holiday traffic flow present unique challenges, such as distinct traffic patterns during vacations and the increased demand for long-term forecastings. Consequently, the effectiveness of existing methods diminishes in such scenarios. Therefore, we propose a novel long-term forecasting model based on scene matching More >

  • Open Access

    ARTICLE

    An Optimized System of Random Forest Model by Global Harmony Search with Generalized Opposition-Based Learning for Forecasting TBM Advance Rate

    Yingui Qiu1, Shuai Huang1, Danial Jahed Armaghani2, Biswajeet Pradhan3, Annan Zhou4, Jian Zhou1,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.138, No.3, pp. 2873-2897, 2024, DOI:10.32604/cmes.2023.029938 - 15 December 2023

    Abstract As massive underground projects have become popular in dense urban cities, a problem has arisen: which model predicts the best for Tunnel Boring Machine (TBM) performance in these tunneling projects? However, performance level of TBMs in complex geological conditions is still a great challenge for practitioners and researchers. On the other hand, a reliable and accurate prediction of TBM performance is essential to planning an applicable tunnel construction schedule. The performance of TBM is very difficult to estimate due to various geotechnical and geological factors and machine specifications. The previously-proposed intelligent techniques in this field… More >

  • Open Access

    REVIEW

    Review of Recent Trends in the Hybridisation of Preprocessing-Based and Parameter Optimisation-Based Hybrid Models to Forecast Univariate Streamflow

    Baydaa Abdul Kareem1,2, Salah L. Zubaidi2,3, Nadhir Al-Ansari4,*, Yousif Raad Muhsen2,5

    CMES-Computer Modeling in Engineering & Sciences, Vol.138, No.1, pp. 1-41, 2024, DOI:10.32604/cmes.2023.027954 - 22 September 2023

    Abstract Forecasting river flow is crucial for optimal planning, management, and sustainability using freshwater resources. Many machine learning (ML) approaches have been enhanced to improve streamflow prediction. Hybrid techniques have been viewed as a viable method for enhancing the accuracy of univariate streamflow estimation when compared to standalone approaches. Current researchers have also emphasised using hybrid models to improve forecast accuracy. Accordingly, this paper conducts an updated literature review of applications of hybrid models in estimating streamflow over the last five years, summarising data preprocessing, univariate machine learning modelling strategy, advantages and disadvantages of standalone ML… More > Graphic Abstract

    Review of Recent Trends in the Hybridisation of Preprocessing-Based and Parameter Optimisation-Based Hybrid Models to Forecast Univariate Streamflow

Displaying 21-30 on page 3 of 196. Per Page