Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (47)
  • Open Access

    PROCEEDINGS

    Post-Buckling and Panel Flutter of Pre-Heated Functionally Graded Plates

    Wei Xia1,2,*, Weilin Kong1, Yupeng Feng1, Shengping Shen1,2,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.24, No.1, pp. 1-2, 2022, DOI:10.32604/icces.2022.08765

    Abstract Post-buckling and panel flutter behaviors of ceramic-metal FGM plates are studied for the skins of supersonic aircrafts. The effects of asymmetric material and temperature distributions, as well as the aerodynamic loads, on the thermo-mechanical response of FGM plates are discussed using finite element simulations. The aero-thermo-elastic model is established by using the simple power law material distribution, the rule of mixture for material effective properties, the nonlinear Fourier equations of heat conduction, von-Karman strain-displacement nonlinear relations, and the piston theory for supersonic aerodynamics. The finite element equations are established using the first-order shear deformable plate elements. The thermal post-buckling equilibrium… More >

  • Open Access

    ARTICLE

    Investigation of the Free Vibrations of Radial Functionally Graded Circular Cylindrical Beams Based on Differential Quadrature Method

    Xiaojun Huang1,2, Liaojun Zhang1,*, Renyu Ge2, Hanbo Cui2, Zhedong Xu2

    CMES-Computer Modeling in Engineering & Sciences, Vol.132, No.1, pp. 23-41, 2022, DOI:10.32604/cmes.2022.019765

    Abstract In the current research, an effective differential quadrature method (DQM) has been developed to solve natural frequency and vibration modal functions of circular section beams along radial functional gradient. Based on the high-order theory of transverse vibration of circular cross-section beams, lateral displacement equation was reconstructed neglecting circumferential shear stress. Two equations coupled with deflection and rotation angles were derived based on elastic mechanics theory and further simplified into a constant coefficient differential equation with natural frequency as eigenvalue. Then, differential quadrature method was applied to transform the eigenvalue problem of the derived differential equation into a set of algebraic… More >

  • Open Access

    ARTICLE

    Forced Vibration Analysis of Functionally Graded Anisotropic Nanoplates Resting on Winkler/Pasternak-Foundation

    Behrouz Karami1, Maziar Janghorban1, Timon Rabczuk2, *

    CMC-Computers, Materials & Continua, Vol.62, No.2, pp. 607-629, 2020, DOI:10.32604/cmc.2020.08032

    Abstract This study investigates the forced vibration of functionally graded hexagonal nano-size plates for the first time. A quasi-three-dimensional (3D) plate theory including stretching effect is used to model the anisotropic plate as a continuum one where smallscale effects are considered based on nonlocal strain gradient theory. Also, the plate is assumed on a Pasternak foundation in which normal and transverse shear loads are taken into account. The governing equations of motion are obtained via the Hamiltonian principles which are solved using analytical based methods by means of Navier’s approximation. The influences of the exponential factor, nonlocal parameter, strain gradient parameter,… More >

  • Open Access

    ARTICLE

    Dynamic Fracture Analysis of Functionally Gradient Materials with Two Cracks By Peridynamic Modeling

    Zhanqi Cheng1, Dongdong Jin1, Chengfang Yuan1, Le Li1,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.121, No.2, pp. 445-464, 2019, DOI:10.32604/cmes.2019.06374

    Abstract In the research, the dynamic fracture failure problem of functionally graded materials (FGMs) containing two pre-cracks was analyzed using a bond-based Peridynamic (PD) method numerical model. The two convergence of decreasing the area of PD horizon (δ-convergence) and uniform mesh refinement (m-convergence) were studied. The effects of both crack position and distance between two cracks on crack propagation pattern in FGMs plate under tensile loads are studied. Furthermore, the effects of different gradient patterns on the dynamic propagation of cracks in FGMs are also investigated. The simulate results suggest that the cracks positions and the distance between them can significantly… More >

  • Open Access

    ARTICLE

    Transient coupled thermoelastic crack analysis in functionally graded materials1

    A.V. Ekhlakov2, O.M. Khay2, Ch. Zhang2, J. Sladek3, V. Sladek3

    Structural Durability & Health Monitoring, Vol.6, No.3&4, pp. 329-350, 2010, DOI:10.3970/sdhm.2010.006.329

    Abstract In this paper, transient crack analysis in two-dimensional, isotropic, continuously non-homo -ge -neous and linear elastic functionally graded materials is presented. A boundary-domain element method based on boundary-domain integral representations is developed. The Laplace-transform technique is utilized to eliminate the dependence on time. Laplace-transformed fundamental solutions of linear coupled thermoelasticity for isotropic, homogeneous and linear elastic solids are applied to derive boundary-domain integral equations. The numerical implementation is performed by using a collocation method for the spatial discretization. The time-dependent numerical solutions are obtained by the Stehfest's inversion algorithm. For an edge crack in a finite domain under thermal shock,… More >

  • Open Access

    ARTICLE

    Crack Growth Modelling in Functionally Graded Materials by Mesh-Free Method

    P.H. Wen1, M.H. Aliabadi2

    Structural Durability & Health Monitoring, Vol.8, No.3, pp. 223-248, 2012, DOI:10.32604/sdhm.2012.008.223

    Abstract A mesh-free method for modelling crack growth in functionally graded materials is presented. Based on the variational principle of the potential energy, mesh-free method has been implemented with enriched radial bases interpolation functions to evaluate mixed-mode stress intensity factors, which are introduced to capture the singularity of stress at the crack tip. Paris law and the maximum principle stress criterion are adopted for defining the growth rate and direction of the fatigue crack growth respectively. The accuracy of the proposed method is assessed by comparison to other available solutions. More >

  • Open Access

    ARTICLE

    The MLPG Method for Crack Analysis in Anisotropic Functionally Graded Materials

    J. Sladek1, V. Sladek, Ch.Zhang2

    Structural Durability & Health Monitoring, Vol.1, No.2, pp. 131-144, 2005, DOI:10.3970/sdhm.2005.001.131

    Abstract A meshless method based on the local Petrov-Galerkin approach is proposed for crack analysis in two-dimensional (2-d), anisotropic and linear elastic solids with continuously varying material properties. Both quasi-static and transient elastodynamic problems are considered. For time-dependent problems, the Laplace-transform technique is utilized. A unit step function is used as the test function in the local weak-form. It is leading to local boundary integral equations (LBIEs) involving only a domain-integral in the case of transient dynamic problems. The analyzed domain is divided into small subdomains with a circular shape. The moving least-squares (MLS) method is adopted for approximating the physical… More >

  • Open Access

    ABSTRACT

    The Influence of Initial Deflection on Nonlinear Flutter Response of Functionally Graded Plates

    Wei Xia1,2,*, Kun Wang1, Haitao Yang1, Shengping Shen1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.21, No.2, pp. 27-27, 2019, DOI:10.32604/icces.2019.05197

    Abstract Panel flutter arises from the aeroelastic instability of the skin structures on the high-speed vehicles, usually in supersonic regime and combined with thermal environment. Unlike the catastrophic flutter of the wings, panel flutter tends to be treated as non-catastrophic one. The nonlinear panel flutter response is of great interest to find the fatigue loading spectra. Present work introduces an aeroelastic model for a thermal isolating panel made from functionally graded materials (FGMs). The Mindlin plate theory is employed to establish the structural equations, the first-order piston theory is adopted for the supersonic aerodynamic loads, and the von-Karman strain-displacement relation is… More >

  • Open Access

    ARTICLE

    Meshless Local Petrov-Galerkin Method for Stress and Crack Analysis in 3-D Axisymmetric FGM Bodies

    J. Sladek1, V. Sladek1, J. Krivacek1, Ch. Zhang2

    CMES-Computer Modeling in Engineering & Sciences, Vol.8, No.3, pp. 259-270, 2005, DOI:10.3970/cmes.2005.008.259

    Abstract A meshless method based on the local Petrov-Galerkin approach is presented for stress analysis in three-dimensional (3-d) axisymmetric linear elastic solids with continuously varying material properties. The inertial effects are considered in dynamic problems. A unit step function is used as the test functions in the local weak-form. It is leading to local boundary integral equations (LBIEs). For transient elastodynamic problems the Laplace-transform technique is applied and the LBIEs are given in the Laplace-transformed domain. Axial symmetry of the geometry and the boundary conditions for a 3-d linear elastic solid reduces the original 3-d boundary value problem into a 2-d… More >

  • Open Access

    ARTICLE

    Analysis of Functionally Graded Magneto-Electro-Elastic Composites Using Hybrid/Mixed Finite Elements and Node-Wise Material Properties

    Peter L. Bishay1, Jan Sladek2, Vladimir Sladek2, Satya N. Atluri1

    CMC-Computers, Materials & Continua, Vol.29, No.3, pp. 213-262, 2012, DOI:10.3970/cmc.2012.029.213

    Abstract A new class of hybrid/mixed finite elements, denoted "HMFEM-C", has been developed for modeling magneto-electro-elastic (MEE) materials. These elements are based on assuming independent strain-fields, electric and magnetic fields, and collocating them with the strain-fields, electric and magnetic fields derived from the primal variables (mechanical displacements, electric and magnetic potentials) at some cleverly chosen points inside each element. The newly developed elements show significantly higher accuracy than the primal elements for the electric, magnetic as well as the mechanical variables. HMFEM-C is invariant through the use of the element-fixed local orthogonal base vectors, and is stable since it is not… More >

Displaying 1-10 on page 1 of 47. Per Page