Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (87)
  • Open Access

    ARTICLE

    A Probabilistic Trust Model and Control Algorithm to Protect 6G Networks against Malicious Data Injection Attacks in Edge Computing Environments

    Borja Bordel Sánchez1,*, Ramón Alcarria2, Tomás Robles1

    CMES-Computer Modeling in Engineering & Sciences, Vol.141, No.1, pp. 631-654, 2024, DOI:10.32604/cmes.2024.050349

    Abstract Future 6G communications are envisioned to enable a large catalogue of pioneering applications. These will range from networked Cyber-Physical Systems to edge computing devices, establishing real-time feedback control loops critical for managing Industry 5.0 deployments, digital agriculture systems, and essential infrastructures. The provision of extensive machine-type communications through 6G will render many of these innovative systems autonomous and unsupervised. While full automation will enhance industrial efficiency significantly, it concurrently introduces new cyber risks and vulnerabilities. In particular, unattended systems are highly susceptible to trust issues: malicious nodes and false information can be easily introduced into… More >

  • Open Access

    ARTICLE

    Fine-Tuning Cyber Security Defenses: Evaluating Supervised Machine Learning Classifiers for Windows Malware Detection

    Islam Zada1,*, Mohammed Naif Alatawi2, Syed Muhammad Saqlain1, Abdullah Alshahrani3, Adel Alshamran4, Kanwal Imran5, Hessa Alfraihi6

    CMC-Computers, Materials & Continua, Vol.80, No.2, pp. 2917-2939, 2024, DOI:10.32604/cmc.2024.052835

    Abstract Malware attacks on Windows machines pose significant cybersecurity threats, necessitating effective detection and prevention mechanisms. Supervised machine learning classifiers have emerged as promising tools for malware detection. However, there remains a need for comprehensive studies that compare the performance of different classifiers specifically for Windows malware detection. Addressing this gap can provide valuable insights for enhancing cybersecurity strategies. While numerous studies have explored malware detection using machine learning techniques, there is a lack of systematic comparison of supervised classifiers for Windows malware detection. Understanding the relative effectiveness of these classifiers can inform the selection of… More >

  • Open Access

    ARTICLE

    A Gaussian Noise-Based Algorithm for Enhancing Backdoor Attacks

    Hong Huang, Yunfei Wang*, Guotao Yuan, Xin Li

    CMC-Computers, Materials & Continua, Vol.80, No.1, pp. 361-387, 2024, DOI:10.32604/cmc.2024.051633

    Abstract Deep Neural Networks (DNNs) are integral to various aspects of modern life, enhancing work efficiency. Nonetheless, their susceptibility to diverse attack methods, including backdoor attacks, raises security concerns. We aim to investigate backdoor attack methods for image categorization tasks, to promote the development of DNN towards higher security. Research on backdoor attacks currently faces significant challenges due to the distinct and abnormal data patterns of malicious samples, and the meticulous data screening by developers, hindering practical attack implementation. To overcome these challenges, this study proposes a Gaussian Noise-Targeted Universal Adversarial Perturbation (GN-TUAP) algorithm. This approach… More >

  • Open Access

    ARTICLE

    Improving the Transmission Security of Vein Images Using a Bezier Curve and Long Short-Term Memory

    Ahmed H. Alhadethi1,*, Ikram Smaoui2, Ahmed Fakhfakh3, Saad M. Darwish4

    CMC-Computers, Materials & Continua, Vol.79, No.3, pp. 4825-4844, 2024, DOI:10.32604/cmc.2024.047852

    Abstract The act of transmitting photos via the Internet has become a routine and significant activity. Enhancing the security measures to safeguard these images from counterfeiting and modifications is a critical domain that can still be further enhanced. This study presents a system that employs a range of approaches and algorithms to ensure the security of transmitted venous images. The main goal of this work is to create a very effective system for compressing individual biometrics in order to improve the overall accuracy and security of digital photographs by means of image compression. This paper introduces… More >

  • Open Access

    ARTICLE

    Enhancing Renewable Energy Integration: A Gaussian-Bare-Bones Levy Cheetah Optimization Approach to Optimal Power Flow in Electrical Networks

    Ali S. Alghamdi1,*, Mohamed A. Zohdy2, Saad Aldoihi3,4

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.2, pp. 1339-1370, 2024, DOI:10.32604/cmes.2024.048839

    Abstract In the contemporary era, the global expansion of electrical grids is propelled by various renewable energy sources (RESs). Efficient integration of stochastic RESs and optimal power flow (OPF) management are critical for network optimization. This study introduces an innovative solution, the Gaussian Bare-Bones Levy Cheetah Optimizer (GBBLCO), addressing OPF challenges in power generation systems with stochastic RESs. The primary objective is to minimize the total operating costs of RESs, considering four functions: overall operating costs, voltage deviation management, emissions reduction, voltage stability index (VSI) and power loss mitigation. Additionally, a carbon tax is included in… More >

  • Open Access

    ARTICLE

    Braille Character Segmentation Algorithm Based on Gaussian Diffusion

    Zezheng Meng, Zefeng Cai, Jie Feng*, Hanjie Ma, Haixiang Zhang, Shaohua Li

    CMC-Computers, Materials & Continua, Vol.79, No.1, pp. 1481-1496, 2024, DOI:10.32604/cmc.2024.048002

    Abstract Optical braille recognition methods typically employ existing target detection models or segmentation models for the direct detection and recognition of braille characters in original braille images. However, these methods need improvement in accuracy and generalizability, especially in densely dotted braille image environments. This paper presents a two-stage braille recognition framework. The first stage is a braille dot detection algorithm based on Gaussian diffusion, targeting Gaussian heatmaps generated by the convex dots in braille images. This is applied to the detection of convex dots in double-sided braille, achieving high accuracy in determining the central coordinates of More >

  • Open Access

    ARTICLE

    Unsupervised Color Segmentation with Reconstructed Spatial Weighted Gaussian Mixture Model and Random Color Histogram

    Umer Sadiq Khan1,2,*, Zhen Liu1,2,*, Fang Xu1,2, Muhib Ullah Khan3,4, Lerui Chen5, Touseef Ahmed Khan4,6, Muhammad Kashif Khattak7, Yuquan Zhang8

    CMC-Computers, Materials & Continua, Vol.78, No.3, pp. 3323-3348, 2024, DOI:10.32604/cmc.2024.046094

    Abstract Image classification and unsupervised image segmentation can be achieved using the Gaussian mixture model. Although the Gaussian mixture model enhances the flexibility of image segmentation, it does not reflect spatial information and is sensitive to the segmentation parameter. In this study, we first present an efficient algorithm that incorporates spatial information into the Gaussian mixture model (GMM) without parameter estimation. The proposed model highlights the residual region with considerable information and constructs color saliency. Second, we incorporate the content-based color saliency as spatial information in the Gaussian mixture model. The segmentation is performed by clustering… More >

  • Open Access

    ARTICLE

    Deep Learning-Based Classification of Rotten Fruits and Identification of Shelf Life

    S. Sofana Reka1, Ankita Bagelikar2, Prakash Venugopal2,*, V. Ravi2, Harimurugan Devarajan3

    CMC-Computers, Materials & Continua, Vol.78, No.1, pp. 781-794, 2024, DOI:10.32604/cmc.2023.043369

    Abstract The freshness of fruits is considered to be one of the essential characteristics for consumers in determining their quality, flavor and nutritional value. The primary need for identifying rotten fruits is to ensure that only fresh and high-quality fruits are sold to consumers. The impact of rotten fruits can foster harmful bacteria, molds and other microorganisms that can cause food poisoning and other illnesses to the consumers. The overall purpose of the study is to classify rotten fruits, which can affect the taste, texture, and appearance of other fresh fruits, thereby reducing their shelf life.… More >

  • Open Access

    ARTICLE

    An Efficient Local Radial Basis Function Method for Image Segmentation Based on the Chan–Vese Model

    Shupeng Qiu, Chujin Lin, Wei Zhao*

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.1, pp. 1119-1134, 2024, DOI:10.32604/cmes.2023.030915

    Abstract In this paper, we consider the Chan–Vese (C-V) model for image segmentation and obtain its numerical solution accurately and efficiently. For this purpose, we present a local radial basis function method based on a Gaussian kernel (GA-LRBF) for spatial discretization. Compared to the standard radial basis function method, this approach consumes less CPU time and maintains good stability because it uses only a small subset of points in the whole computational domain. Additionally, since the Gaussian function has the property of dimensional separation, the GA-LRBF method is suitable for dealing with isotropic images. Finally, a More > Graphic Abstract

    An Efficient Local Radial Basis Function Method for Image Segmentation Based on the Chan–Vese Model

  • Open Access

    ARTICLE

    A Differential Privacy Federated Learning Scheme Based on Adaptive Gaussian Noise

    Sanxiu Jiao1, Lecai Cai2,*, Xinjie Wang1, Kui Cheng2, Xiang Gao3

    CMES-Computer Modeling in Engineering & Sciences, Vol.138, No.2, pp. 1679-1694, 2024, DOI:10.32604/cmes.2023.030512

    Abstract As a distributed machine learning method, federated learning (FL) has the advantage of naturally protecting data privacy. It keeps data locally and trains local models through local data to protect the privacy of local data. The federated learning method effectively solves the problem of artificial Smart data islands and privacy protection issues. However, existing research shows that attackers may still steal user information by analyzing the parameters in the federated learning training process and the aggregation parameters on the server side. To solve this problem, differential privacy (DP) techniques are widely used for privacy protection… More > Graphic Abstract

    A Differential Privacy Federated Learning Scheme Based on Adaptive Gaussian Noise

Displaying 1-10 on page 1 of 87. Per Page