Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (30)
  • Open Access

    ARTICLE

    Spatio-Temporal Graph Neural Networks with Elastic-Band Transform for Solar Radiation Prediction

    Guebin Choi*

    CMES-Computer Modeling in Engineering & Sciences, Vol.146, No.1, 2026, DOI:10.32604/cmes.2025.073985 - 29 January 2026

    Abstract This study proposes a novel forecasting framework that simultaneously captures the strong periodicity and irregular meteorological fluctuations inherent in solar radiation time series. Existing approaches typically define inter-regional correlations using either simple correlation coefficients or distance-based measures when applying spatio-temporal graph neural networks (STGNNs). However, such definitions are prone to generating spurious correlations due to the dominance of periodic structures. To address this limitation, we adopt the Elastic-Band Transform (EBT) to decompose solar radiation into periodic and amplitude-modulated components, which are then modeled independently with separate graph neural networks. The periodic component, characterized by strong More >

  • Open Access

    REVIEW

    Learning from Scarcity: A Review of Deep Learning Strategies for Cold-Start Energy Time-Series Forecasting

    Jihoon Moon*

    CMES-Computer Modeling in Engineering & Sciences, Vol.146, No.1, 2026, DOI:10.32604/cmes.2025.071052 - 29 January 2026

    Abstract Predicting the behavior of renewable energy systems requires models capable of generating accurate forecasts from limited historical data, a challenge that becomes especially pronounced when commissioning new facilities where operational records are scarce. This review aims to synthesize recent progress in data-efficient deep learning approaches for addressing such “cold-start” forecasting problems. It primarily covers three interrelated domains—solar photovoltaic (PV), wind power, and electrical load forecasting—where data scarcity and operational variability are most critical, while also including representative studies on hydropower and carbon emission prediction to provide a broader systems perspective. To this end, we examined… More >

  • Open Access

    REVIEW

    A Systematic Review of Frameworks for the Detection and Prevention of Card-Not-Present (CNP) Fraud

    Kwabena Owusu-Mensah*, Edward Danso Ansong , Kofi Sarpong Adu-Manu, Winfred Yaokumah

    Journal of Cyber Security, Vol.8, pp. 33-92, 2026, DOI:10.32604/jcs.2026.074265 - 20 January 2026

    Abstract The rapid growth of digital payment systems and remote financial services has led to a significant increase in Card-Not-Present (CNP) fraud, which is now the primary source of card-related losses worldwide. Traditional rule-based fraud detection methods are becoming insufficient due to several challenges, including data imbalance, concept drift, privacy concerns, and limited interpretability. In response to these issues, a systematic review of twenty-four CNP fraud detection frameworks developed between 2014 and 2025 was conducted. This review aimed to identify the technologies, strategies, and design considerations necessary for adaptive solutions that align with evolving regulatory standards.… More >

  • Open Access

    ARTICLE

    Smart Contract Vulnerability Detection Based on Symbolic Execution and Graph Neural Networks

    Haoxin Sun1, Xiao Yu1,*, Jiale Li1, Yitong Xu1, Jie Yu1, Huanhuan Li1, Yuanzhang Li2, Yu-An Tan2

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-15, 2026, DOI:10.32604/cmc.2025.070930 - 09 December 2025

    Abstract Since the advent of smart contracts, security vulnerabilities have remained a persistent challenge, compromsing both the reliability of contract execution and the overall stability of the virtual currency market. Consequently, the academic community has devoted increasing attention to these security risks. However, conventional approaches to vulnerability detection frequently exhibit limited accuracy. To address this limitation, the present study introduces a novel vulnerability detection framework called GNNSE that integrates symbolic execution with graph neural networks (GNNs). The proposed method first constructs semantic graphs to comprehensively capture the control flow and data flow dependencies within smart contracts. More >

  • Open Access

    ARTICLE

    A Novel Unsupervised Structural Attack and Defense for Graph Classification

    Yadong Wang1, Zhiwei Zhang1,*, Pengpeng Qiao2, Ye Yuan1, Guoren Wang1

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-22, 2026, DOI:10.32604/cmc.2025.068590 - 10 November 2025

    Abstract Graph Neural Networks (GNNs) have proven highly effective for graph classification across diverse fields such as social networks, bioinformatics, and finance, due to their capability to learn complex graph structures. However, despite their success, GNNs remain vulnerable to adversarial attacks that can significantly degrade their classification accuracy. Existing adversarial attack strategies primarily rely on label information to guide the attacks, which limits their applicability in scenarios where such information is scarce or unavailable. This paper introduces an innovative unsupervised attack method for graph classification, which operates without relying on label information, thereby enhancing its applicability… More >

  • Open Access

    ARTICLE

    GLM-EP: An Equivariant Graph Neural Network and Protein Language Model Integrated Framework for Predicting Essential Proteins in Bacteriophages

    Jia Mi1, Zhikang Liu1, Chang Li2, Jing Wan1,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.3, pp. 4089-4106, 2025, DOI:10.32604/cmes.2025.074364 - 23 December 2025

    Abstract Recognizing essential proteins within bacteriophages is fundamental to uncovering their replication and survival mechanisms and contributes to advances in phage-based antibacterial therapies. Despite notable progress, existing computational techniques struggle to represent the interplay between sequence-derived and structure-dependent protein features. To overcome this limitation, we introduce GLM-EP, a unified framework that fuses protein language models with equivariant graph neural networks. By merging semantic embeddings extracted from amino acid sequences with geometry-aware graph representations, GLM-EP enables an in-depth depiction of phage proteins and enhances essential protein identification. Evaluation on diverse benchmark datasets confirms that GLM-EP surpasses conventional More >

  • Open Access

    ARTICLE

    Graph Neural Network-Assisted Lion Swarm Optimization for Traffic Congestion Prediction in Intelligent Urban Mobility Systems

    Meshari D. Alanazi1, Gehan Elsayed2,*, Turki M. Alanazi3, Anis Sahbani4, Amr Yousef5,6

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.2, pp. 2277-2309, 2025, DOI:10.32604/cmes.2025.070726 - 26 November 2025

    Abstract Traffic congestion plays a significant role in intelligent transportation systems (ITS) due to rapid urbanization and increased vehicle concentration. The congestion is dependent on multiple factors, such as limited road occupancy and vehicle density. Therefore, the transportation system requires an effective prediction model to reduce congestion issues in a dynamic environment. Conventional prediction systems face difficulties in identifying highly congested areas, which leads to reduced prediction accuracy. The problem is addressed by integrating Graph Neural Networks (GNN) with the Lion Swarm Optimization (LSO) framework to tackle the congestion prediction problem. Initially, the traffic information is… More >

  • Open Access

    ARTICLE

    DSGNN: Dual-Shield Defense for Robust Graph Neural Networks

    Xiaohan Chen1, Yuanfang Chen1,*, Gyu Myoung Lee2, Noel Crespi3, Pierluigi Siano4

    CMC-Computers, Materials & Continua, Vol.85, No.1, pp. 1733-1750, 2025, DOI:10.32604/cmc.2025.067284 - 29 August 2025

    Abstract Graph Neural Networks (GNNs) have demonstrated outstanding capabilities in processing graph-structured data and are increasingly being integrated into large-scale pre-trained models, such as Large Language Models (LLMs), to enhance structural reasoning, knowledge retrieval, and memory management. The expansion of their application scope imposes higher requirements on the robustness of GNNs. However, as GNNs are applied to more dynamic and heterogeneous environments, they become increasingly vulnerable to real-world perturbations. In particular, graph data frequently encounters joint adversarial perturbations that simultaneously affect both structures and features, which are significantly more challenging than isolated attacks. These disruptions, caused… More >

  • Open Access

    ARTICLE

    Resource Allocation in V2X Networks: A Double Deep Q-Network Approach with Graph Neural Networks

    Zhengda Huan1, Jian Sun2,*, Zeyu Chen1, Ziyi Zhang1, Xiao Sun1, Zenghui Xiao1

    CMC-Computers, Materials & Continua, Vol.84, No.3, pp. 5427-5443, 2025, DOI:10.32604/cmc.2025.065860 - 30 July 2025

    Abstract With the advancement of Vehicle-to-Everything (V2X) technology, efficient resource allocation in dynamic vehicular networks has become a critical challenge for achieving optimal performance. Existing methods suffer from high computational complexity and decision latency under high-density traffic and heterogeneous network conditions. To address these challenges, this study presents an innovative framework that combines Graph Neural Networks (GNNs) with a Double Deep Q-Network (DDQN), utilizing dynamic graph structures and reinforcement learning. An adaptive neighbor sampling mechanism is introduced to dynamically select the most relevant neighbors based on interference levels and network topology, thereby improving decision accuracy and… More >

  • Open Access

    ARTICLE

    Distributed Photovoltaic Power Prediction Technology Based on Spatio-Temporal Graph Neural Networks

    Dayan Sun1, Xiao Cao2,*, Zhifeng Liang1, Junrong Xia2, Yuqi Wang3

    Energy Engineering, Vol.122, No.8, pp. 3329-3346, 2025, DOI:10.32604/ee.2025.066341 - 24 July 2025

    Abstract Photovoltaic (PV) power generation is undergoing significant growth and serves as a key driver of the global energy transition. However, its intermittent nature, which fluctuates with weather conditions, has raised concerns about grid stability. Accurate PV power prediction has been demonstrated as crucial for power system operation and scheduling, enabling power slope control, fluctuation mitigation, grid stability enhancement, and reliable data support for secure grid operation. However, existing prediction models primarily target centralized PV plants, largely neglecting the spatiotemporal coupling dynamics and output uncertainties inherent to distributed PV systems. This study proposes a novel Spatio-Temporal… More >

Displaying 1-10 on page 1 of 30. Per Page