Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (21)
  • Open Access

    ARTICLE

    Grid-Connected Control Strategy of VSG under Complex Grid Voltage Conditions

    Bin Zhang, Yanjun Jin*

    Energy Engineering, Vol.119, No.4, pp. 1467-1482, 2022, DOI:10.32604/ee.2022.018233

    Abstract Under complex grid conditions, the grid voltage usually has an imbalance, low order harmonics, and a small of DC bias. When the grid voltage contains low order harmonics and a small amount of DC bias component, the inverter's output current cannot meet the grid connection requirements, and there is a three-phase current imbalance in the control strategy of common VSG under unbalanced voltage. A theoretical analysis of non-ideal power grids is carried out, and a VSG control strategy under complex operating conditions is proposed. Firstly, the third-order generalized integrator (TOGI) is used to eliminate the influence of the DC component… More >

  • Open Access

    ARTICLE

    Bi-Level Energy Management Model of Grid-Connected Microgrid Community

    Haibin Cao1, Houqi Dong1, Yongjie Ren1, Yuqing Wang2,*, Na Li3, Ming Zeng1

    Energy Engineering, Vol.119, No.3, pp. 965-984, 2022, DOI:10.32604/ee.2022.020051

    Abstract As the proportion of renewable energy power generation continues to increase, the number of grid-connected microgrids is gradually increasing, and geographically adjacent microgrids can be interconnected to form a Micro-Grid Community (MGC). In order to reduce the operation and maintenance costs of a single micro grid and reduce the adverse effects caused by unnecessary energy interaction between the micro grid and the main grid while improving the overall economic benefits of the micro grid community, this paper proposes a bi-level energy management model with the optimization goal of maximizing the social welfare of the micro grid community and minimizing the… More >

  • Open Access

    ARTICLE

    Condition Monitoring and Maintenance Management with Grid-Connected Renewable Energy Systems

    Md. Mottahir Alam1,*, Ahteshamul Haque2, Mohammed Ali Khan3, Nebras M. Sobahi1, Ibrahim Mustafa Mehedi1,4, Asif Irshad Khan5

    CMC-Computers, Materials & Continua, Vol.72, No.2, pp. 3999-4017, 2022, DOI:10.32604/cmc.2022.026353

    Abstract The shift towards the renewable energy market for carbon-neutral power generation has encouraged different governments to come up with a plan of action. But with the endorsement of renewable energy for harsh environmental conditions like sand dust and snow, monitoring and maintenance are a few of the prime concerns. These problems were addressed widely in the literature, but most of the research has drawbacks due to long detection time, and high misclassification error. Hence to overcome these drawbacks, and to develop an accurate monitoring approach, this paper is motivated toward the understanding of primary failure concerning a grid-connected photovoltaic (PV)… More >

  • Open Access

    ARTICLE

    A Modified-Simplified MPPT Technique for Three-Phase Single-State Grid-Connected PV Systems

    Anuchit Aurairat, Boonyang Plangklang*

    CMC-Computers, Materials & Continua, Vol.72, No.2, pp. 2375-2395, 2022, DOI:10.32604/cmc.2022.025122

    Abstract Nowadays, the single state inverter for the grid-connected photovoltaic (PV) systems is becoming more and more popular as they can reduce circuit complexity resulting in less power losses of the inverter. This paper focuses on the use of model predictive control (MPC) to control a 3-phase and 2-level single-state grid-connected inverter in order to regulate the PV maximum power point (MPP). The algorithm of MPC scheme was done to measure the simultaneous current signal including predicting the next sampling current flow. The reference current (Id*) was used to control the distribution of electrical power from the solar cell to the… More >

  • Open Access

    ARTICLE

    Optimized Control of Single Phase Reboost Luo Converter Fed Grid-Connected PV System

    S. Baskaran1,*, Raghuraman Sivalingam2

    Intelligent Automation & Soft Computing, Vol.33, No.2, pp. 1103-1119, 2022, DOI:10.32604/iasc.2022.023093

    Abstract An epic topology of PV system for 1Ф grid tied framework with high gain altered Re Boost Luo converter is developed. In this epic topology, the PV (Photovoltaic) system is connected with single phase network via a Re Boost Luo converter and Voltage Source Inverter. The voltage variance issues of PV framework are overwhelmed by extricating most extreme power from the array. The Whale Optimization is utilized to extract the vast majority of the power from photovoltaic array. Similar to the existing topology, the proposed scheme is designed using reference casings of direct and quadrature hub components. The Re Boost… More >

  • Open Access

    ARTICLE

    Ferroresonance Overvoltage Mitigation Using Surge Arrester for Grid-Connected Wind Farm

    Nehmdoh A. Sabiha*, Hend I. Alkhammash

    Intelligent Automation & Soft Computing, Vol.31, No.2, pp. 1107-1118, 2022, DOI:10.32604/iasc.2022.020070

    Abstract Ferroresonance occurrence represents a very dangerous phenomenon to electric power systems. Concerning the recent trend of the applications of grid-connected wind farms, this phenomenon can lead to undesired overvoltages stressing the wind farm components. In this paper, the ferroresonance overvoltages are studied and mitigated for the grid-connected wind farm. Single-pole switching of the breaker is considered, where it is the most famous reason behind the ferroresonance transient events in the electric power systems. During the ferroresonance period, the transient voltage of the network is increased to more than three times the voltage level and associated with harmonics. Surge arrester is… More >

  • Open Access

    ARTICLE

    Techno-Economic Analysis of a Grid-Connected Waste to Energy Gasification Plant: A Case Study

    Ahmed Abubakar Elwan*, Mohammed Hafiz Habibuddin

    Energy Engineering, Vol.118, No.6, pp. 1681-1701, 2021, DOI:10.32604/EE.2021.016291

    Abstract With population growth around the world, municipal waste disposal and continued energy demand becomes some of the major challenges to deal with. In order to address these, an approach is required for an optimal waste management system that offers the population benefit with a lower environmental impact. This study evaluates the technical-economic and environmental impact analysis of a grid-connected waste to energy (WtE) plant to power a Univerisiti Teknologi Malaysia (UTM) community. The energy recovery potential of the waste stream was assessed using the life cycle assessment (LCA) method with GaBiTM software (version 4). A technical, economic and environmental analysis… More >

  • Open Access

    ARTICLE

    FCS-MPC Strategy for PV Grid-Connected Inverter Based on MLD Model

    Xiaojuan Lu, Qingbo Zhang*

    Energy Engineering, Vol.118, No.6, pp. 1729-1740, 2021, DOI:10.32604/EE.2021.014938

    Abstract In the process of grid-connected photovoltaic power generation, there are high requirements for the quality of the power that the inverter breaks into the grid. In this work, to improve the power quality of the grid-connected inverter into the grid, and the output of the system can meet the grid-connected requirements more quickly and accurately, we exhibit an approach toward establishing a mixed logical dynamical (MLD) model where logic variables were introduced to switch dynamics of the single-phase photovoltaic inverters. Besides, based on the model, our recent efforts in studying the finite control set model predictive control (FCS-MPC) and devising… More >

  • Open Access

    ARTICLE

    Design of Nonlinear Uncertainty Controller for Grid-Tied Solar Photovoltaic System Using Sliding Mode Control

    D. Menaga1, M. Premkumar2, R. Sowmya1,*, S. Narasimman3

    Energy Engineering, Vol.117, No.6, pp. 481-495, 2020, DOI:10.32604/EE.2020.013282

    Abstract The proposed controller accompanies with different sliding surfaces. To understand maximum power point extraction as opposed to nonlinear uncertainties and unknown disturbance of a grid-connected photovoltaic system to various control inputs (ud, uq) is designed. To extract maximum power from a solar array and maintain unity power flow in a grid by controlling the voltage across the dclink capacitor (Vpvdc) and reactive current (iq). A multiple input-output with multiple uncertainty constraints have considered designing proposed sliding mode controllers to validated their robustness performance. An innovative controller verifies uncertain inputs, constant and changes in irradiances, and temperature of the photo-voltaic system.… More >

  • Open Access

    ARTICLE

    Wind Farm-Battery Energy Storage Assessment in Grid-Connected Microgrids

    Shafiqur Rehman1, Umar T. Salman2,*, Luai M. Alhems1

    Energy Engineering, Vol.117, No.6, pp. 343-365, 2020, DOI:10.32604/EE.2020.011471

    Abstract Renewable energy has received much attention in the last few decades and more investment is being attracted across the world to boost its contribution towards the existing energy mix. In the Kingdom of Saudi Arabia (KSA), many studies have been conducted on the potential of renewable energy sources (RES), such as wind, solar, and geothermal. Many of these studies have revealed that the Kingdom is blessed with an abundance of RES with wind energy being the best after solar. This paper presents an analysis of windfarm distributed generation (WFDG) for energy management strategy in the Eastern Province of KSA. The… More >

Displaying 11-20 on page 2 of 21. Per Page