Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (1,134)
  • Open Access

    ARTICLE

    FSS-YOLO: The Lightweight Drill Pipe Detection Method Based on YOLOv8n-obb

    Mingyang Zhao1,2,*, Xiaojun Li1,3, Miao Li1,2, Bangbang Mu1,2

    CMC-Computers, Materials & Continua, Vol.84, No.2, pp. 2827-2846, 2025, DOI:10.32604/cmc.2025.065251 - 03 July 2025

    Abstract The control of gas extraction in coal mines relies on the effectiveness of gas extraction. The main method of gas extraction is to drive drill pipes into the coal seam through a drilling rig and use technologies such as hydraulic fracturing to pre-extract gas in the drill holes. Therefore, the real-time detection of the drill pipe status is closely related to the effectiveness of gas extraction. To achieve fast and accurate identification of drill pipes, we propose FSS-YOLO, which is a lightweight drill pipe detection method based on YOLOv8n-obb. This method first introduces the FasterBlock… More >

  • Open Access

    ARTICLE

    SFC_DeepLabv3+: A Lightweight Grape Image Segmentation Method Based on Content-Guided Attention Fusion

    Yuchao Xia, Jing Qiu*

    CMC-Computers, Materials & Continua, Vol.84, No.2, pp. 2531-2547, 2025, DOI:10.32604/cmc.2025.064635 - 03 July 2025

    Abstract In recent years, fungal diseases affecting grape crops have attracted significant attention. Currently, the assessment of black rot severity mainly depends on the ratio of lesion area to leaf surface area. However, effectively and accurately segmenting leaf lesions presents considerable challenges. Existing grape leaf lesion segmentation models have several limitations, such as a large number of parameters, long training durations, and limited precision in extracting small lesions and boundary details. To address these issues, we propose an enhanced DeepLabv3+ model incorporating Strip Pooling, Content-Guided Fusion, and Convolutional Block Attention Module (SFC_DeepLabv3+), an enhanced lesion segmentation method based… More >

  • Open Access

    ARTICLE

    A Lightweight Super-Resolution Network for Infrared Images Based on an Adaptive Attention Mechanism

    Mengke Tang1, Yong Gan2,*, Yifan Zhang1, Xinxin Gan3

    CMC-Computers, Materials & Continua, Vol.84, No.2, pp. 2699-2716, 2025, DOI:10.32604/cmc.2025.064541 - 03 July 2025

    Abstract Infrared imaging technology has been widely adopted in various fields, such as military reconnaissance, medical diagnosis, and security monitoring, due to its excellent ability to penetrate smoke and fog. However, the prevalent low resolution of infrared images severely limits the accurate interpretation of their contents. In addition, deploying super-resolution models on resource-constrained devices faces significant challenges. To address these issues, this study proposes a lightweight super-resolution network for infrared images based on an adaptive attention mechanism. The network’s dynamic weighting module automatically adjusts the weights of the attention and non-attention branch outputs based on the… More >

  • Open Access

    ARTICLE

    Explainable Diabetic Retinopathy Detection Using a Distributed CNN and LightGBM Framework

    Pooja Bidwai1,2, Shilpa Gite1,3, Biswajeet Pradhan4,*, Abdullah Almari5

    CMC-Computers, Materials & Continua, Vol.84, No.2, pp. 2645-2676, 2025, DOI:10.32604/cmc.2025.061018 - 03 July 2025

    Abstract Diabetic Retinopathy (DR) is a critical disorder that affects the retina due to the constant rise in diabetics and remains the major cause of blindness across the world. Early detection and timely treatment are essential to mitigate the effects of DR, such as retinal damage and vision impairment. Several conventional approaches have been proposed to detect DR early and accurately, but they are limited by data imbalance, interpretability, overfitting, convergence time, and other issues. To address these drawbacks and improve DR detection accurately, a distributed Explainable Convolutional Neural network-enabled Light Gradient Boosting Machine (DE-ExLNN) is… More >

  • Open Access

    ARTICLE

    Quantum-Driven Spherical Fuzzy Model for Best Gate Security Systems

    Muhammad Amad Sarwar1,*, Yuezheng Gong1, Sarah A. Alzakari2, Amel Ali Alhussan2

    CMES-Computer Modeling in Engineering & Sciences, Vol.143, No.3, pp. 3523-3555, 2025, DOI:10.32604/cmes.2025.066356 - 30 June 2025

    Abstract Global security threats have motivated organizations to adopt robust and reliable security systems to ensure the safety of individuals and assets. Biometric authentication systems offer a strong solution. However, choosing the best security system requires a structured decision-making framework, especially in complex scenarios involving multiple criteria. To address this problem, we develop a novel quantum spherical fuzzy technique for order preference by similarity to ideal solution (QSF-TOPSIS) methodology, integrating quantum mechanics principles and fuzzy theory. The proposed approach enhances decision-making accuracy, handles uncertainty, and incorporates criteria relationships. Criteria weights are determined using spherical fuzzy sets,… More >

  • Open Access

    ARTICLE

    Enhancing IoT Resilience at the Edge: A Resource-Efficient Framework for Real-Time Anomaly Detection in Streaming Data

    Kirubavathi G.1,*, Arjun Pulliyasseri1, Aswathi Rajesh1, Amal Ajayan1, Sultan Alfarhood2,*, Mejdl Safran2, Meshal Alfarhood2, Jungpil Shin3

    CMES-Computer Modeling in Engineering & Sciences, Vol.143, No.3, pp. 3005-3031, 2025, DOI:10.32604/cmes.2025.065698 - 30 June 2025

    Abstract The exponential expansion of the Internet of Things (IoT), Industrial Internet of Things (IIoT), and Transportation Management of Things (TMoT) produces vast amounts of real-time streaming data. Ensuring system dependability, operational efficiency, and security depends on the identification of anomalies in these dynamic and resource-constrained systems. Due to their high computational requirements and inability to efficiently process continuous data streams, traditional anomaly detection techniques often fail in IoT systems. This work presents a resource-efficient adaptive anomaly detection model for real-time streaming data in IoT systems. Extensive experiments were carried out on multiple real-world datasets, achieving… More >

  • Open Access

    ARTICLE

    Lightweight Deep Learning Model and Novel Dataset for Restoring Damaged Barcodes and QR Codes in Logistics Applications

    Tarek Muallim1, Haluk Kucuk2,*, Muhammet Bareket1, Metin Kahraman1

    CMES-Computer Modeling in Engineering & Sciences, Vol.143, No.3, pp. 3557-3581, 2025, DOI:10.32604/cmes.2025.064733 - 30 June 2025

    Abstract This study introduces a lightweight deep learning model and a novel synthetic dataset designed to restore damaged one-dimensional (1D) barcodes and Quick Response (QR) codes, addressing critical challenges in logistics operations. The proposed solution leverages an efficient Pix2Pix-based framework, a type of conditional Generative Adversarial Network (GAN) optimized for image-to-image translation tasks, enabling the recovery of degraded barcodes and QR codes with minimal computational overhead. A core contribution of this work is the development of a synthetic dataset that simulates realistic damage scenarios frequently encountered in logistics environments, such as low contrast, misalignment, physical wear,… More >

  • Open Access

    ARTICLE

    Modeling of CO2 Emission for Light-Duty Vehicles: Insights from Machine Learning in a Logistics and Transportation Framework

    Sahbi Boubaker1,*, Sameer Al-Dahidi2, Faisal S. Alsubaei3

    CMES-Computer Modeling in Engineering & Sciences, Vol.143, No.3, pp. 3583-3614, 2025, DOI:10.32604/cmes.2025.063957 - 30 June 2025

    Abstract The transportation and logistics sectors are major contributors to Greenhouse Gase (GHG) emissions. Carbon dioxide (CO2) from Light-Duty Vehicles (LDVs) is posing serious risks to air quality and public health. Understanding the extent of LDVs’ impact on climate change and human well-being is crucial for informed decision-making and effective mitigation strategies. This study investigates the predictability of CO2 emissions from LDVs using a comprehensive dataset that includes vehicles from various manufacturers, their CO2 emission levels, and key influencing factors. Specifically, six Machine Learning (ML) algorithms, ranging from simple linear models to complex non-linear models, were applied under… More >

  • Open Access

    ARTICLE

    Epidemiological Modeling of Pneumococcal Pneumonia: Insights from ABC Fractal-Fractional Derivatives

    Mohammed Althubyani1,*, Nidal E. Taha2, Khdija O. Taha2, Rasmiyah A. Alharb2, Sayed Saber1,3

    CMES-Computer Modeling in Engineering & Sciences, Vol.143, No.3, pp. 3491-3521, 2025, DOI:10.32604/cmes.2025.061640 - 30 June 2025

    Abstract This study investigates the dynamics of pneumococcal pneumonia using a novel fractal-fractional Susceptible-Carrier-Infected-Recovered model formulated with the Atangana-Baleanu in Caputo (ABC) sense. Unlike traditional epidemiological models that rely on classical or Caputo fractional derivatives, the proposed model incorporates nonlocal memory effects, hereditary properties, and complex transmission dynamics through fractal-fractional calculus. The Atangana-Baleanu operator, with its non-singular Mittag-Leffler kernel, ensures a more realistic representation of disease progression compared to classical integer-order models and singular kernel-based fractional models. The study establishes the existence and uniqueness of the proposed system and conducts a comprehensive stability analysis, including local More >

  • Open Access

    ARTICLE

    A Combined Denoising Method of Adaptive VMD and Wavelet Threshold for Gear Health Monitoring

    Guangfei Jia*, Jinqiu Yang, Hanwen Liang

    Structural Durability & Health Monitoring, Vol.19, No.4, pp. 1057-1072, 2025, DOI:10.32604/sdhm.2025.061805 - 30 June 2025

    Abstract Considering the noise problem of the acquisition signals from mechanical transmission systems, a novel denoising method is proposed that combines Variational Mode Decomposition (VMD) with wavelet thresholding. The key innovation of this method lies in the optimization of VMD parameters K and using the improved Horned Lizard Optimization Algorithm (IHLOA). An inertia weight parameter is introduced into the random walk strategy of HLOA, and the related formula is improved. The acquisition signal can be adaptively decomposed into some Intrinsic Mode Functions (IMFs), and the high-noise IMFs are identified based on a correlation coefficient-variance method. Further noise… More > Graphic Abstract

    A Combined Denoising Method of Adaptive VMD and Wavelet Threshold for Gear Health Monitoring

Displaying 1-10 on page 1 of 1134. Per Page