Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (1,220)
  • Open Access

    ARTICLE

    An Optimal Right-Turn Coordination System for Connected and Automated Vehicles at Urban Intersections

    Mahmudul Hasan1, Shuji Doman1, A. S. M. Bakibillah2, Md Abdus Samad Kamal1,*, Kou Yamada1

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-17, 2026, DOI:10.32604/cmc.2025.070222 - 10 November 2025

    Abstract Traffic at urban intersections frequently encounters unexpected obstructions, resulting in congestion due to uncooperative and priority-based driving behavior. This paper presents an optimal right-turn coordination system for Connected and Automated Vehicles (CAVs) at single-lane intersections, particularly in the context of left-hand side driving on roads. The goal is to facilitate smooth right turns for certain vehicles without creating bottlenecks. We consider that all approaching vehicles share relevant information through vehicular communications. The Intersection Coordination Unit (ICU) processes this information and communicates the optimal crossing or turning times to the vehicles. The primary objective of this… More >

  • Open Access

    ARTICLE

    Lightweight YOLOv5 with ShuffleNetV2 for Rice Disease Detection in Edge Computing

    Qingtao Meng, Sang-Hyun Lee*

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-15, 2026, DOI:10.32604/cmc.2025.069970 - 10 November 2025

    Abstract This study proposes a lightweight rice disease detection model optimized for edge computing environments. The goal is to enhance the You Only Look Once (YOLO) v5 architecture to achieve a balance between real-time diagnostic performance and computational efficiency. To this end, a total of 3234 high-resolution images (2400 × 1080) were collected from three major rice diseases Rice Blast, Bacterial Blight, and Brown Spot—frequently found in actual rice cultivation fields. These images served as the training dataset. The proposed YOLOv5-V2 model removes the Focus layer from the original YOLOv5s and integrates ShuffleNet V2 into the… More >

  • Open Access

    ARTICLE

    FedCW: Client Selection with Adaptive Weight in Heterogeneous Federated Learning

    Haotian Wu1, Jiaming Pei2, Jinhai Li3,*

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-20, 2026, DOI:10.32604/cmc.2025.069873 - 10 November 2025

    Abstract With the increasing complexity of vehicular networks and the proliferation of connected vehicles, Federated Learning (FL) has emerged as a critical framework for decentralized model training while preserving data privacy. However, efficient client selection and adaptive weight allocation in heterogeneous and non-IID environments remain challenging. To address these issues, we propose Federated Learning with Client Selection and Adaptive Weighting (FedCW), a novel algorithm that leverages adaptive client selection and dynamic weight allocation for optimizing model convergence in real-time vehicular networks. FedCW selects clients based on their Euclidean distance from the global model and dynamically adjusts More >

  • Open Access

    ARTICLE

    M2ATNet: Multi-Scale Multi-Attention Denoising and Feature Fusion Transformer for Low-Light Image Enhancement

    Zhongliang Wei1,*, Jianlong An1, Chang Su2

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-20, 2026, DOI:10.32604/cmc.2025.069335 - 10 November 2025

    Abstract Images taken in dim environments frequently exhibit issues like insufficient brightness, noise, color shifts, and loss of detail. These problems pose significant challenges to dark image enhancement tasks. Current approaches, while effective in global illumination modeling, often struggle to simultaneously suppress noise and preserve structural details, especially under heterogeneous lighting. Furthermore, misalignment between luminance and color channels introduces additional challenges to accurate enhancement. In response to the aforementioned difficulties, we introduce a single-stage framework, M2ATNet, using the multi-scale multi-attention and Transformer architecture. First, to address the problems of texture blurring and residual noise, we design… More >

  • Open Access

    ARTICLE

    Lightweight Multi-Agent Edge Framework for Cybersecurity and Resource Optimization in Mobile Sensor Networks

    Fatima Al-Quayed*

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-16, 2026, DOI:10.32604/cmc.2025.069102 - 10 November 2025

    Abstract Due to the growth of smart cities, many real-time systems have been developed to support smart cities using Internet of Things (IoT) and emerging technologies. They are formulated to collect the data for environment monitoring and automate the communication process. In recent decades, researchers have made many efforts to propose autonomous systems for manipulating network data and providing on-time responses in critical operations. However, the widespread use of IoT devices in resource-constrained applications and mobile sensor networks introduces significant research challenges for cybersecurity. These systems are vulnerable to a variety of cyberattacks, including unauthorized access,… More >

  • Open Access

    ARTICLE

    FMCSNet: Mobile Devices-Oriented Lightweight Multi-Scale Object Detection via Fast Multi-Scale Channel Shuffling Network Model

    Lijuan Huang1, Xianyi Liu2, Jinping Liu2,*, Pengfei Xu2,*

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-20, 2026, DOI:10.32604/cmc.2025.068818 - 10 November 2025

    Abstract The ubiquity of mobile devices has driven advancements in mobile object detection. However, challenges in multi-scale object detection in open, complex environments persist due to limited computational resources. Traditional approaches like network compression, quantization, and lightweight design often sacrifice accuracy or feature representation robustness. This article introduces the Fast Multi-scale Channel Shuffling Network (FMCSNet), a novel lightweight detection model optimized for mobile devices. FMCSNet integrates a fully convolutional Multilayer Perceptron (MLP) module, offering global perception without significantly increasing parameters, effectively bridging the gap between CNNs and Vision Transformers. FMCSNet achieves a delicate balance between computation… More >

  • Open Access

    ARTICLE

    The Research on Low-Light Autonomous Driving Object Detection Method

    Jianhua Yang*, Zhiwei Lv, Changling Huo

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-18, 2026, DOI:10.32604/cmc.2025.068442 - 10 November 2025

    Abstract Aiming at the scale adaptation of automatic driving target detection algorithms in low illumination environments and the shortcomings in target occlusion processing, this paper proposes a YOLO-LKSDS automatic driving detection model. Firstly, the Contrast-Limited Adaptive Histogram Equalisation (CLAHE) image enhancement algorithm is improved to increase the image contrast and enhance the detailed features of the target; then, on the basis of the YOLOv5 model, the Kmeans++ clustering algorithm is introduced to obtain a suitable anchor frame, and SPPELAN spatial pyramid pooling is improved to enhance the accuracy and robustness of the model for multi-scale target… More >

  • Open Access

    ARTICLE

    Lightweight Small Defect Detection with YOLOv8 Using Cascaded Multi-Receptive Fields and Enhanced Detection Heads

    Shengran Zhao, Zhensong Li*, Xiaotan Wei, Yutong Wang, Kai Zhao

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-14, 2026, DOI:10.32604/cmc.2025.068138 - 10 November 2025

    Abstract In printed circuit board (PCB) manufacturing, surface defects can significantly affect product quality. To address the performance degradation, high false detection rates, and missed detections caused by complex backgrounds in current intelligent inspection algorithms, this paper proposes CG-YOLOv8, a lightweight and improved model based on YOLOv8n for PCB surface defect detection. The proposed method optimizes the network architecture and compresses parameters to reduce model complexity while maintaining high detection accuracy, thereby enhancing the capability of identifying diverse defects under complex conditions. Specifically, a cascaded multi-receptive field (CMRF) module is adopted to replace the SPPF module… More >

  • Open Access

    REVIEW

    Cadmium Hyperaccumulation in Plants: Mechanistic Insights and Ecological Implications

    Mingwei Yue1, Shen Rao1,*, Xiaomeng Liu1, Wei Yang2, Yuan Yuan1, Feng Xu2, Shuiyuan Cheng1,*

    Phyton-International Journal of Experimental Botany, Vol.94, No.11, pp. 3319-3348, 2025, DOI:10.32604/phyton.2025.073602 - 01 December 2025

    Abstract Cadmium (Cd), a highly toxic heavy metal, represents a major global environmental threat due to its widespread dispersion through anthropogenic activities. Environmental Cd contamination poses significant risks to living organisms, including humans, animals, and plants. Certain plant species have evolved Cd hyperaccumulating capabilities to adapt to high-Cd habitats, playing critical roles in phytoremediation strategies. Here we review the biodiversity and biogeography of Cd hyperaccumulators, the underlying mechanisms of Cd uptake and accumulation, and the ecological impacts of hyperaccumulation. The major points are the following: twenty-four Cd hyperaccumulator species have been documented, with shoot Cd concentrations More >

  • Open Access

    REVIEW

    Key Plant Transcription Factors in Crop Tolerance to Abiotic Stresses

    Nadia Lamsaadi1, Oumaima Maarouf2, Soukaina Lahmaoui2, Hamid Msaad2, Omar Farssi2, Chaima Hamim2, Mohamed Tamoudjout2, Hafsa Hirt2, Habiba Kamal2, Majida El Hassni2, Cherki Ghoulam3,4, Ahmed El Moukhtari5,*, Mohamed Farissi2

    Phyton-International Journal of Experimental Botany, Vol.94, No.11, pp. 3585-3610, 2025, DOI:10.32604/phyton.2025.072311 - 01 December 2025

    Abstract Abiotic stresses, such as drought, heavy metals, salinity, and extreme temperatures, are among the most common adverse threats that restrict the use of land for agriculture and limit crop growth and productivity. As sessile organisms, plants defend themselves from abiotic stresses by developing various tolerance mechanisms. These mechanisms are governed by several biochemical traits. The biochemical mechanisms are the products of key genes that express under specific conditions. Interestingly, the expression of these genes is regulated by specialized proteins known as transcription factors (TFs). Several TFs, including those from the bZIP, bHLH, MYB, HSF, WRKY,… More >

Displaying 1-10 on page 1 of 1220. Per Page