Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (3)
  • Open Access

    ARTICLE

    Construction of MMC-CLCC Hybrid DC Transmission System and Its Power Flow Reversal Control Strategy

    Yechun Xin1, Xinyuan Zhao1, Dong Ding2, Shuyu Chen2, Chuanjie Wang2, Tuo Wang1,*

    Energy Engineering, Vol.123, No.1, 2026, DOI:10.32604/ee.2025.069748 - 27 December 2025

    Abstract To enhance power flow regulation in scenarios involving large-scale renewable energy transmission via high-voltage direct current (HVDC) links and multi-infeed DC systems in load-center regions, this paper proposes a hybrid modular multilevel converter–capacitor-commutated line-commutated converter (MMC-CLCC) HVDC transmission system and its corresponding control strategy. First, the system topology is constructed, and a submodule configuration method for the MMC—combining full-bridge submodules (FBSMs) and half-bridge submodules (HBSMs)—is proposed to enable direct power flow reversal. Second, a hierarchical control strategy is introduced, including MMC voltage control, CLCC current control, and a coordination mechanism, along with the derivation of… More >

  • Open Access

    ARTICLE

    Analysis of DC-Side Harmonic Characteristics and Optimization of Filter Design for Hybrid DC Transmission Systems

    Chunyan Li1, Luo Li1, Yushuang Li2, Yong Jia1, Wenyan Li3,*

    Energy Engineering, Vol.122, No.10, pp. 4313-4330, 2025, DOI:10.32604/ee.2025.070187 - 30 September 2025

    Abstract To accelerate the large-scale integration of renewable energy and support the strategic goals of “carbon peaking and carbon neutrality,” High Voltage Direct Current (HVDC) transmission technology has made significant breakthroughs. Among the various approaches, a hybrid DC transmission system that combines a line-commutated converter (LCC) and a voltage source converter (VSC) retains the inherent fault self-clearing capability of the LCC topology while mitigating the risk of commutation failure when connected to a weak grid. In this paper, based on the harmonic generation mechanisms of hybrid DC transmission systems, an improved 3-pulse harmonic source model of… More >

  • Open Access

    ARTICLE

    An Adaptive Wireless Power Sharing Control for Multiterminal HVDC

    Hasan Alrajhi*

    Computer Systems Science and Engineering, Vol.45, No.1, pp. 117-129, 2023, DOI:10.32604/csse.2023.022464 - 16 August 2022

    Abstract Power sharing among multiterminal high voltage direct current terminals (MT-HVDC) is mainly developed based on a priority or sequential manners, which uses to prevent the problem of overloading due to a predefined controller coefficient. Furthermore, fixed power sharing control also suffers from an inability to identify power availability at a rectification station. There is a need for a controller that ensures an efficient power sharing among the MT-HVDC terminals, prevents the possibility of overloading, and utilizes the available power sharing. A new adaptive wireless control for active power sharing among multiterminal (MT-HVDC) systems, including power… More >

Displaying 1-10 on page 1 of 3. Per Page