Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (52)
  • Open Access

    ARTICLE

    Determination of an Unknown Heat Source Term from Boundary Data

    Y. Hu1, T. Wei1,2

    CMES-Computer Modeling in Engineering & Sciences, Vol.87, No.4, pp. 307-326, 2012, DOI:10.3970/cmes.2012.087.307

    Abstract This paper employ the method of fundamental solutions for determining an unknown heat source term in a heat equation from overspecified boundary measurement data. By a function transformation, the inverse source problem is changed into an inverse initial data problem which is solved by a method of fundamental solutions. The standard Tikhonov regularization technique with the generalized cross-validation criterion for choosing the regularization parameter is adopted for solving the resulting ill-conditioned system of linear algebraic equations. The effectiveness of the algorithm is illustrated by five numerical examples in one-dimensional and two-dimensional cases. More >

  • Open Access

    ARTICLE

    Numerical Reconstruction of a Space-Dependent Heat Source Term in a Multi-Dimensional Heat Equation

    C. Shi1, C. Wang1, T. Wei1,2

    CMES-Computer Modeling in Engineering & Sciences, Vol.86, No.2, pp. 71-92, 2012, DOI:10.3970/cmes.2012.086.071

    Abstract In this paper, we consider a typical ill-posed inverse heat source problem, that is, we determine a space-dependent heat source term in a multi-dimensional heat equation from a pair of Cauchy data on a part of boundary. By a simple transformation, the inverse heat source problem is changed into a Cauchy problem of a homogenous heat conduction equation. We use the method of fundamental solutions (MFS) coupled with the Tikhonov regularization technique to solve the ill-conditioned linear system of equations resulted from the MFS discretization. The generalized cross-validation rule for determining the regularization parameter is used. Numerical results for four… More >

  • Open Access

    ARTICLE

    Inverse Analysis of Solidification Problems Using the Mesh-Free Radial Point Interpolation Method

    A. Khosravifard1, M.R. Hematiyan1,2

    CMES-Computer Modeling in Engineering & Sciences, Vol.78, No.3&4, pp. 185-208, 2011, DOI:10.3970/cmes.2011.078.185

    Abstract An inverse method for optimal control of the freezing front motion in the solidification of pure materials is presented. The inverse technique utilizes the idea of a pseudo heat source to account for the latent heat effects. The numerical formulation of this inverse method is based on a formerly introduced meshless technique. In this method, the flux and the velocity of the liquid-solid interface are treated as secondary variables and the liquid and solid domains are modeled simultaneously. Some numerical examples are provided to demonstrate the efficiency of the presented method. The effects of regularization and the number of nodes… More >

  • Open Access

    ARTICLE

    Interfacial Stresses Induced by a Point Heat Source in an Isotropic Plate with a Reinforced Elliptical Hole

    Ching Kong Chao1,2, Chin Kun Chen1, Fu Mo Chen3

    CMES-Computer Modeling in Engineering & Sciences, Vol.63, No.1, pp. 1-28, 2010, DOI:10.3970/cmes.2010.063.001

    Abstract A general analytical solution for a reinforced elliptical hole embedded in an infinite matrix subjected to a point heat source is provided in this paper. Based on the technique of conformal mapping and the method of analytical continuation in conjunction with the alternating technique, the general expressions of the temperature and stresses in the reinforcement layer and the matrix are derived explicitly in a series form. Some numerical results are provided to investigate the effects of the material combinations and geometric configurations on the interfacial stresses. The solution obtained can be treated as Green's functions which enable us to formulate… More >

  • Open Access

    ARTICLE

    A Three-Point BVP of Time-Dependent Inverse Heat Source Problems and Solving by a TSLGSM

    Weichung Yeih1,2, Chein-Shan Liu3

    CMES-Computer Modeling in Engineering & Sciences, Vol.46, No.2, pp. 107-128, 2009, DOI:10.3970/cmes.2009.046.107

    Abstract We consider an inverse problem for estimating an unknown time dependent heat source H(t) in a heat conduction equation ut(x,t) = uxx(x,t) + H(t). First this inverse problem is formulated as a three-point boundary value problem (BVP) for ODEs discretized from the transformed homogeneous governing equation. To treat this three-point BVP we develop a two-stage Lie-group shooting method (TSLGSM). The novel approach is examined through numerical examples to convince that it is rather accurate and efficient; the estimation error is small even for identifying discontinuous and oscillatory heat sources under noise. More >

  • Open Access

    ARTICLE

    An Accurate Refinement Scheme for Inverse Heat Source Location Identifications

    Leevan Ling1, Tomoya Takeuchi2

    CMES-Computer Modeling in Engineering & Sciences, Vol.20, No.2, pp. 99-110, 2007, DOI:10.3970/cmes.2007.020.099

    Abstract We aim to identify the unknown source locations in a two-dimensional heat equation from scattered measurements. In [Inverse Problems, 22(4):1289--1305, 2006], we proposed a numerical procedure that identifies the unknown source locations of 2D heat equation solely based on three measurement points. Due to the nonlinearity and complexity of the problem, the quality of the resulting estimations is often poor especially when the number of unknown is large. In this paper, we purpose a linear refinement scheme that takes the outputs of the existing nonlinear algorithm as initial guesses and iteratively improves on the accuracy of the estimations; the convergence… More >

  • Open Access

    ARTICLE

    Mixed Convection in a Lid-Driven Square Cavity With Heat Sources Using Nanofluids

    Ilhem Zeghbid1, Rachid Bessaïh1

    FDMP-Fluid Dynamics & Materials Processing, Vol.13, No.4, pp. 251-273, 2017, DOI:10.3970/fdmp.2017.013.251

    Abstract This paper presents a numerical study of two-dimensional laminar mixed convection in a lid-driven square cavity filled with a nanofluid and heated simultaneously at a constant heat flux q” by two heat sources placed on the two vertical walls. The movable wall and the bottom wall of the cavity are maintained at a local cold temperature TC, respectively. The finite volume method was used to solve the equations of flow with heat transfer across the physical domain. Comparisons with previous results were performed and found to be in excellent agreement. Results were presented in terms of streamlines, isotherms, vertical velocity… More >

  • Open Access

    ARTICLE

    Mixed Convection of Nanofluids inside a Lid-Driven Cavity Heated by a Central Square Heat Source

    Fatima-zohra Bensouici1, *, Saadoun Boudebous2

    FDMP-Fluid Dynamics & Materials Processing, Vol.13, No.3, pp. 189-212, 2017, DOI:10.3970/fdmp.2017.013.189

    Abstract A numerical work has been performed to analyze the laminar mixed convection of nanofluids confined in a lid driven square enclosure with a central square and isotherm heat source. All the walls are cooled at constant temperature, and the top wall slides rightward at constant velocity. The simulations considered four types of nanofluids (Cu, Ag, Al2O3 and TiO2)-Water. The governing equations were solved using finite volume approach by the SIMPLER algorithm. Comparisons with previously published work are performed and found to be in good agreement. The influence of pertinent parameters such as Richardson number, size of the heat source, solid… More >

  • Open Access

    ARTICLE

    Investigation of the Melting Coupled Natural Convection of Nano Phase Change Material: A Fan Less Cooling of Heat Sources

    Mustapha FARAJI1

    FDMP-Fluid Dynamics & Materials Processing, Vol.13, No.1, pp. 19-36, 2017, DOI:10.3970/fdmp.2017.013.019

    Abstract A two-dimensional numerical model that accounts for heat transfer by conduction and natural convection in the molten region of nano enhanced Phase Change Material (PCM) is performed. Numerical investigations were conducted using an enthalpy- porosity method in order to examine the impact of the dispersion of copper (CuO) nanoparticles on the heat source temperature and the effect on the heat sink secured working time and the melting rate. Results show that heat spreads more easily along the conducting plate and to the PCM and, consequently, the PCM melts rapidly and the heat source is efficiency cooled by the addition of… More >

  • Open Access

    ARTICLE

    Thermal Radiation and Chemical Reaction Effects on Steady Convective Slip Flow with Uniform Heat and Mass Flux in the Presence of Ohmic Heating and a Heat Source

    Gnaneswara Reddy Machireddy1

    FDMP-Fluid Dynamics & Materials Processing, Vol.10, No.4, pp. 417-442, 2014, DOI:10.3970/fdmp.2014.010.417

    Abstract This study deals with the investigation of the effects exerted by heat radiation and a first-order chemical reaction on the magnetohydrodynamics boundary layer slip flow which is established past a vertical permeable surface embedded in a porous medium (with uniform heat and mass flux). The heat equation includes the relevant terms, i.e. the viscous dissipation, radiative heat flux, Ohmic dissipation, and absorption of radiation. The mass transfer equation takes into account the effects related to the chemically reactive species. A classical model for optically thin media is used for studying the effect of radiation. The resulting non-linear coupled partial differential… More >

Displaying 41-50 on page 5 of 52. Per Page