Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (429)
  • Open Access

    ARTICLE

    The Second-Order Two-Scale Method for Heat Transfer Performances of Periodic Porous Materials with Interior Surface Radiation

    Zhiqiang Yang1, Junzhi Cui2, Yufeng Nie1, Qiang Ma2

    CMES-Computer Modeling in Engineering & Sciences, Vol.88, No.5, pp. 419-442, 2012, DOI:10.3970/cmes.2012.088.419

    Abstract In this paper, a new second-order two-scale (SOTS) method is developed to predict heat transfer performances of periodic porous materials with interior surface radiation. Firstly, the second-order two-scale formulation for computing temperature field of the problem is given by means of construction way. Then, the error estimation of the second-order two-scale approximate solution is derived on some regularity hypothesis. Finally, the corresponding finite element algorithms are proposed and some numerical results are presented. They show that the SOTS method in this paper is feasible and valid for predicting the heat transfer performances of periodic porous More >

  • Open Access

    ARTICLE

    Prandtl Number Signature on Flow Patterns of Electrically Conducting Fluid in Square Enclosure

    Ridha Djebali1,2, Bernard Pateyron2, Mohamed El Ganaoui3

    CMES-Computer Modeling in Engineering & Sciences, Vol.88, No.4, pp. 293-308, 2012, DOI:10.3970/cmes.2012.088.293

    Abstract We present in this study a numerical investigation of unsteady two-dimensional natural convection of an electrically conducting fluid in a square cavity under an externally imposed magnetic field. A temperature gradient is applied between the two opposing side walls parallel to y-direction, while the floor and ceiling parallel to x-direction are adiabatic. The flow is characterized by the Rayleigh number Ra raged in 103-106, the Prandtl number Pr ranged in 0.01-10, the Hartman number Ha determined by the strength of the imposed magnetic field ranged in 0-100 and its tilting angle from x-axis ranging from… More >

  • Open Access

    ARTICLE

    Natural Convection Flow and Heat Transfer in Square Enclosure Asymetrically Heated from Below: A Lattice Boltzmann Comprehensive Study

    Taoufik Naffouti1,2 and Ridha Djebali1,3

    CMES-Computer Modeling in Engineering & Sciences, Vol.88, No.3, pp. 211-228, 2012, DOI:10.3970/cmes.2012.088.211

    Abstract This paper reports numerical results of natural convection flow evolving inside confined medium defined by two-dimensional square enclosure containing isothermal hot source placed asymmetrically at bottom wall. The sides-walls are isothermally cooled at a constant temperature; however the ceiling and the rest of bottom wall are insulated. The lattice Boltzmann method is used to solve the dimensionless governing equations with the associated boundary conditions. The flow is monitored by the Grashof number and the Prandtl number taken here 0.71. Numerical simulations are performed to study the effects of Grashof number ranging from 104 to 106,… More >

  • Open Access

    ARTICLE

    Optimal Shape of Fibers in Transmission Problem

    P.P. Prochazka1, M.J. Valek1

    CMES-Computer Modeling in Engineering & Sciences, Vol.87, No.3, pp. 207-224, 2012, DOI:10.3970/cmes.2012.087.207

    Abstract In classical theories of homogenization and localization of composites the effect of shape of inclusions is not taken into account. This is probably done because of very small fibers in classical composites based on epoxy matrix. Applying more precise theoretical and numerical tools appears that the classical theories desire corrections in this direction. Today many types of materials their fiber are much bigger and with various material properties are used and behave as typical composites. They enable producers to create the fiber cross-sections and model them in various shapes, so that it is meaningful to More >

  • Open Access

    ARTICLE

    A 2D Lattice Boltzmann Full Analysis of MHD Convective Heat Transfer in Saturated Porous Square Enclosure

    Ridha Djebali1,2, Mohamed ElGanaoui3, Taoufik Naffouti1

    CMES-Computer Modeling in Engineering & Sciences, Vol.84, No.6, pp. 499-527, 2012, DOI:10.3970/cmes.2012.084.499

    Abstract A thermal lattice Boltzmann model for incompressible flow is developed and extended to investigate the natural convection flow in porous media under the effect of uniform magnetic field. The study shows that the flow behaviour is various parameters dependent. The Rayleigh number (Ra), Hartmann number (Ha), Darcy number (Da) and the medium inclination angle from the horizontal (Φ), the magnetic field orientation (ψ) and the medium porosity (ε) effects are carried out in wide ranges encountered in industrial and engineering applications. It was found that the flow and temperature patterns change significantly when varying these parameters. To confirm More >

  • Open Access

    ARTICLE

    Application of Homotopy Analysis Method for Periodic Heat Transfer in Convective Straight Fins with Temperature-Dependent Thermal Conductivity

    Wei-Chung Tien1, Yue-Tzu Yang1, Cha’o-Kuang Chen1,2

    CMES-Computer Modeling in Engineering & Sciences, Vol.84, No.2, pp. 155-170, 2012, DOI:10.3970/cmes.2012.084.155

    Abstract In this paper, the homotopy analysis method is applied to analyze the heat transfer of the oscillating base temperature processes occurring in a convective rectangular fin with variable thermal conductivity. This method is a powerful and easy-to-use tool for non-linear problems and it provides us with a simple way to adjust and control the convergence region of solution series. Without the need of iteration, the obtained solution is in the form of an infinite power series and the results indicated that the series has high accuracy by comparing it with those generated by the complex More >

  • Open Access

    ARTICLE

    Experimental and Numerical Studies on Heat Transfer and Fluid Flow in a Duct Fitted with Inclined Baffles

    W. A. El-Askary, A. Abdel-Fattah

    CMES-Computer Modeling in Engineering & Sciences, Vol.83, No.4, pp. 425-458, 2012, DOI:10.3970/cmes.2012.083.425

    Abstract In the present paper, experimental and numerical studies of heat transfer and the frictional head loss of turbulent flow in a duct with a heated upper surface are performed. Four different arrangements are considered (case 1: without baffles, case 2: one perforated baffle on the upper wall and one solid baffle on the lower wall, case 3: one perforated baffle on the upper wall and one perforated baffle on the lower wall and case 4: two perforated baffles on the upper wall). A numerical code developed by the present authors is simultaneously presented including four… More >

  • Open Access

    ARTICLE

    Enhanced Heat Transfer by Unipolar Injection of Electric Charges in Differentially Heated Dielectric Liquid Layer

    Walid Hassen1, Mohamed Naceur Borjini2, Habib Ben Aissia1

    FDMP-Fluid Dynamics & Materials Processing, Vol.8, No.4, pp. 381-396, 2012, DOI:10.3970/fdmp.2012.008.381

    Abstract In this work we consider the problem related to the electro-thermo-convection of a dielectric fluid in a rectangular enclosure placed between two electrodes. This layer is subjected simultaneously to the injection of electric charges and to a thermal gradient. The influence of the electric Rayleigh number (200 - 1000) on the structure of the flow, the density of electric charge and heat transfer is investigated. An oscillatory flow is observed and discussed in detail. More >

  • Open Access

    ARTICLE

    Influence of the Air Gap Layer Thickness on Heat Transfer Between the Glass Cover and the Absorber of a Solar Collector

    F.Z. Ferahta1,2, S. Bougoul1, M. Médale2, C. Abid2

    FDMP-Fluid Dynamics & Materials Processing, Vol.8, No.3, pp. 339-352, 2012, DOI:10.3970/fdmp.2012.008.339

    Abstract A numerical study is carried out to evaluate the thermal performances of a solar collector. As it is well known, that the thermal losses of such systems are mainly of a convective nature, the study is concentrated in particular on the features of natural convection that is activated in the air domain delimited by the upper glass and the lower absorber of the solar collector. The efficiency of such a system depends essentially on both the temperature difference and the distance between the absorber and the glass. Since the temperature difference remains an uncontrolled variable More >

  • Open Access

    ARTICLE

    A 2D Improvement of Radiative Heat Transfer with the P1 Approximation and a Statistical Narrow Band Model

    A. Khourchafi1, M. El Alami2,3, M. Najam2, M. Belhaq4

    FDMP-Fluid Dynamics & Materials Processing, Vol.8, No.3, pp. 323-338, 2012, DOI:10.3970/fdmp.2012.008.323

    Abstract A spectral radiation study has been carried out in the framework of a statistical narrow-band model based on an inverse-tailed exponential law and the socalled P1 approximation. This new spectral formulation, which may be also regarded as a grey band formulation with a local absorption coefficient, leads to two implementation methods: a non correlated form in which the averaged formulation of the P1 approximation does not take into account the correlation between fundamental quantities and a pseudo-correlated variant consisting basically of a technique for improving the anisotropy of the radiative intensity. Real gases (H2O, CO2) are More >

Displaying 361-370 on page 37 of 429. Per Page