Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (15)
  • Open Access

    ARTICLE

    RESEARCH ON BUILDING GLAZED TILE OF FLY ASH ADDED BY RADIATION HEAT TREATMENT INSIDE CATALYTIC COMBUSTION FURNACE OF NATURAL GAS

    Shihong Zhang* , Xu Fan

    Frontiers in Heat and Mass Transfer, Vol.14, pp. 1-6, 2020, DOI:10.5098/hmt.14.9

    Abstract This article discussed compressive strength, water absorption, thermal conductivity and Frost resistance of building glazed tile of fly ash added in order to solve the problem of shortage of raw materials in the production. According to the technology of catalytic combustion furnace, glazed tiles of fly ash added with pure solid texture and glamorous colors were obtained by radiation heat treatment. It also greatly reduced pollutant emissions. The suitable proportion is about 30% of fly ash from these tests and the molding pressure is 20MPa. The utilization of fly ash not only alleviates the environmental pollution, but also saves raw… More >

  • Open Access

    ARTICLE

    In Situ Generation of Copper Nanoparticles in Heat-Treated Copper-Containing Masson’s Pine as a Preservative Process for Sawn Timber

    Minting Lai, Guijun Xie*, Wanju Li, Lamei Li, Yongjian Cao

    Journal of Renewable Materials, Vol.11, No.6, pp. 2665-2678, 2023, DOI:10.32604/jrm.2023.027441

    Abstract Heat-treated wood has good dimensional stability, durability, and color, but its susceptibility to fungal growth affects its commercial value. In this study, lumber harvested from mature Masson’s pine (Pinus massoniana Lamb.) was vacuum impregnated with a basic copper salt solution (copper hydroxide, diethanolamine, and polyethylene glycol 200) prior to heat-treatment at 220°C for 3 h. Antifungal properties, surface chemistry, crystal structure and sugar contents were tested, compared with heat treatment alone. The results showed that the samples treated by heating without copper salt treatment showed poor suppression of fungal growth, the copper-impregnated heat-treated wood suppressed (100%) the growth of Botryodiplodia theobromaeMore >

  • Open Access

    ARTICLE

    A Primary Study on Mechanical Properties of Heat-Treated Wood via in-situ Synthesis of Calcium Carbonate

    Dianen Liang1, Zhenhao Ding1, Qilin Yan1, Redžo Hasanagić2, Leila Fathi3, Zi Yang1, Longhao Li1, Jianbo Wang1, Houhua Luo1, Qian Wang1, Demiao Chu1,*

    Journal of Renewable Materials, Vol.11, No.1, pp. 435-451, 2023, DOI:10.32604/jrm.2022.023214

    Abstract This study aims to improve the value of fast-growing wood and extend the heat-treated wood utilization using inorganic calcium carbonate (CaCO3) crystals via an in-situ synthesis method. CaCl2 and Na2CO3 solutions with a concentration ratio of 1:1 were successively introduced into the thermally modified poplar wood obtained by steam heat treatment (HT) at 200°C for 1.5 and 3 h, resulting in the in-situ synthesis of CaCO3 crystals inside the heat-treated wood. The filling effect was best at the concentration of 1.2 mol/L. CaCO3 was uniformly distributed in the cell cavities of the heat-treated wood, and some of the crystals were… More > Graphic Abstract

    A Primary Study on Mechanical Properties of Heat-Treated Wood via <i>in-situ</i> Synthesis of Calcium Carbonate

  • Open Access

    PROCEEDINGS

    The Effect of Tempering Duration on the Creep Behavior of the P91 Steels at 600℃

    Jundong Yin1, Lei Wang1, Baoyin Zhu2, Guodong Zhang2, Dongfeng Li1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.24, No.1, pp. 1-3, 2022, DOI:10.32604/icces.2022.08750

    Abstract High performance martensitic heat resistant steels are widely used in fossil fuel power plant industry due to because of their good creep resistance at high temperatures. In-depth understanding of the high temperature inelastic deformation mechanism of such steels is crucial to ensure the reliable, safe and efficient operation of the power plant [1]. The martensitic steels have a complex microstructure with a hierarchical arrangement, including a collection of packets in the prior austenite grain, blocks in the packet and laths along with dispersed nanoscale strengthening phases (e.g., MX precipitates and carbides). The purpose of this paper is to study the… More >

  • Open Access

    ARTICLE

    Study on the Effect of Two-Step Saturated Steam Heat Treatment Process on the Properties of Reconstituted Bamboo

    Xin Han1,4, Zhichao Lou1,3,4,*, Chenglong Yuan1,4, Xinwu Wu1,4, Jie Liu1,4, Fujin Weng2, Yanjun Li1,4,*

    Journal of Renewable Materials, Vol.10, No.12, pp. 3313-3334, 2022, DOI:10.32604/jrm.2022.021066

    Abstract With the aim of utilizing reconstituted bamboo as a carbon cycle-oriented material, the improvement of physical and mechanical properties has been actively studied to solve using problems. The saturated steam heat treatment process has been widely used in worldwide. With the development and exploration of this technology, two-step saturated steam heat treatment process appears in some practical production, that is, after a period of saturated steam heat treatment at a lower temperature, the bamboo bundles are taken out and seasoned for a period of time, and then put back into the heat tank again, and heated at a higher temperature… More >

  • Open Access

    ARTICLE

    Optimization of Heat Treatment Scheduling for Hot Press Forging Using Data-Driven Models

    Seyoung Kim1, Jeonghoon Choi1, Kwang Ryel Ryu2,*

    Intelligent Automation & Soft Computing, Vol.32, No.1, pp. 207-220, 2022, DOI:10.32604/iasc.2022.021752

    Abstract Scheduling heat treatment jobs in a hot press forging factory involves forming batches of multiple workpieces for the given furnaces, determining the start time of heating each batch, and sorting out the order of cooling the heated workpieces. Among these, forming batches is particularly difficult because of the various constraints that must be satisfied. This paper proposes an optimization method based on an evolutionary algorithm to search for a heat treatment schedule of maximum productivity with minimum energy cost, satisfying various constraints imposed on the batches. Our method encodes a candidate solution as a permutation of heat treatment jobs and… More >

  • Open Access

    ARTICLE

    Study on Preparation of Lignin-Containing Nanocellulose from Bamboo Parenchyma

    Wenli Gu1, Shiyi Zeng1, Assima Dauletbek2, Bin Xu1,3,*, Xinzhou Wang1, Man Yuan1, Yanni Gu1

    Journal of Renewable Materials, Vol.10, No.2, pp. 385-399, 2022, DOI:10.32604/jrm.2022.016457

    Abstract Bamboo vascular bundle fiber and parenchyma (BP) are separated by high-temperature treatment with saturated steam. Bamboo vascular bundle fiber is widely used in the market, but how to develop and utilize parenchyma tissue is a difficult problem. The sulfated cellulose nanofibers (ANFs) were obtained by sulfating BP with a deep eutectic solvent (DES), which provided a theoretical basis for the value-added utilization of BP. Using DES as the reaction medium and reagent, the BP was grafted with a sulfonic acid group to form a gel substance in water, ANFs and nanocellulose gel were obtained by ultrasonic cell crusher. The highest… More > Graphic Abstract

    Study on Preparation of Lignin-Containing Nanocellulose from Bamboo Parenchyma

  • Open Access

    ARTICLE

    Physical, Anatomical, and Photochemical Analyses of Some Exotic Wood Species Submitted to Heat Treatment

    Alper Aytekin1,*, Hikmet Yazıcı2

    Journal of Renewable Materials, Vol.9, No.8, pp. 1485-1501, 2021, DOI:10.32604/jrm.2021.015768

    Abstract The objective of this study was to evaluate the effect of heat treatment on decorative properties including glossiness, color coordinates including lightness (L), blue-yellow (b*) and red-green (a*), hardness (shore-D) morphological characterization and thermal properties of some exotic wood species. Heat treatment of anigre (Aningeria altissima), cedrorana (Cedrelinga catenaeformis), cemara (Casuarina sumatrana) and coronilla (Scutia buxifolia) wood materials were performed in an oven with a programmable controller at 210°C for 3 h. The obtained samples were conditioned in a climate cabin and the decorative properties, morphological characterization with scanning electron microscopy (SEM) and thermal properties with thermogravimetric analyzer (TGA) of… More > Graphic Abstract

    Physical, Anatomical, and Photochemical Analyses of Some Exotic Wood Species Submitted to Heat Treatment

  • Open Access

    ARTICLE

    Fabrication of Crack-Free Flattened Bamboo and Its Macro-/Micro-Morphological and Mechanical Properties

    Zhichao Lou1,2, Tiancheng Yuan1, Qiuyi Wang1, Xinwu Wu1, Shouheng Hu1, Xiaomeng Hao1, Xianmiao Liu3,*, Yanjun Li1,*

    Journal of Renewable Materials, Vol.9, No.5, pp. 959-977, 2021, DOI:10.32604/jrm.2021.014285

    Abstract This work aimed to help the bamboo industry develop methodology for producing imperfection-free bamboo boards that can serve either decorative or structural benefit to consumers seeking to engage with the bioeconomy. Specifi- cally, softened and slotted bamboo tubes were handled by a roller device with nails to render crack-free flattened bamboo board. Softening temperature and time were optimized herein according to findings regarding chemical composition and board mechanical properties. The optimal softening parameters for saturated steam heat treatment is proved to be 160°C for 8 minutes. The flattened bamboo board possesses an increased bending strength of 101.5 MPa and a… More >

  • Open Access

    ARTICLE

    The Effects of Different Post-Heat Treatments on Rolling Contact Fatigue Behaviors of Direct Laser Cladding Inconel 625 Coatings

    Qiaoxin Zhang1,2, Rui Chen1, Ding Jin2, Chen Zhou2,*, Xuewu Li3,4,5,*

    Journal of Renewable Materials, Vol.9, No.1, pp. 129-144, 2021, DOI:10.32604/jrm.2021.011596

    Abstract In this paper, the microstructures and rolling contact fatigue behaviors of laser cladding Inconel 625 coatings with or without post-heat treatments were analyzed. The results revealed that the fatigue resistance of the laser cladding coating after any post-heat treatment was worse than that of the as-deposited coating. First, through the finite element analysis, the distribution of stress along the thickness direction of the coating was obtained, and it was concluded that the bonding interface between the coating and the matrix had little effect on the fatigue properties of the coating. Then X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy… More >

Displaying 1-10 on page 1 of 15. Per Page