Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (2)
  • Open Access

    ARTICLE

    Numerical Simulation Analysis of the Transformer Fire Extinguishing Process with a High-Pressure Water Mist System under Different Conditions

    Haowei Yao1,3,*, Youxin Li1,3, Kefeng Lv1,3, Dong Wang2,3, Jinguang Zhang4, Zhenyu Zhan2,3, Zhenyu Wang2,3, Huaitao Song1,3, Xiaoge Wei1,3, Hengjie Qin1,3

    CMES-Computer Modeling in Engineering & Sciences, Vol.136, No.1, pp. 733-747, 2023, DOI:10.32604/cmes.2023.022155

    Abstract To thoroughly study the extinguishing effect of a high-pressure water mist fire extinguishing system when a transformer fire occurs, a 3D experimental model of a transformer is established in this work by employing Fire Dynamics Simulator (FDS) software. More specifically, by setting different parameters, the process of the high-pressure water mist fire extinguishing system with the presence of both diverse ambient temperatures and water mist sprinkler laying conditions is simulated. In addition, the fire extinguishing effect of the employed high-pressure water mist system with the implementation of different strategies is systematically analyzed. The extracted results show that a fire source… More > Graphic Abstract

    Numerical Simulation Analysis of the Transformer Fire Extinguishing Process with a High-Pressure Water Mist System under Different Conditions

  • Open Access

    ARTICLE

    A Numerical Study on the Extinguishing Performances of High-Pressure Water Mist on Power-Transformer Fires for Different Flow Rates and Particle Velocities

    Yongheng Ku1, Jinguang Zhang2,3, Zhenyu Wang3,4, Youxin Li3,5, Haowei Yao3,5,*

    FDMP-Fluid Dynamics & Materials Processing, Vol.17, No.6, pp. 1077-1090, 2021, DOI:10.32604/fdmp.2021.015779

    Abstract In order to study the extinguishing performance of high-pressure-water-mist-based systems on the fires originating from power transformers the PyroSim software is used. Different particle velocities and flow rates are considered. The evolution laws of temperature around transformer, flue gas concentration and upper layer temperature of flue gas are analyzed under different boundary conditions. It is shown that the higher the particle velocity is, the lower the smoke concentration is, the better the cooling effect on the upper layer temperature of flue gas layer is, the larger the flow rate is and the better the cooling effect is. More >

Displaying 1-10 on page 1 of 2. Per Page