Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (17)
  • Open Access


    Contact Stress Reliability Analysis Model for Cylindrical Gear with Circular Arc Tooth Trace Based on an Improved Metamodel

    Qi Zhang1,2,4,5, Zhixin Chen3, Yang Wu4,*, Guoqi Xiang2, Guang Wen1, Xuegang Zhang2, Yongchun Xie2, Guangchun Yang2

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.1, pp. 593-619, 2024, DOI:10.32604/cmes.2023.046319

    Abstract Although there is currently no unified standard theoretical formula for calculating the contact stress of cylindrical gears with a circular arc tooth trace (referred to as CATT gear), a mathematical model for determining the contact stress of CATT gear is essential for studying how parameters affect its contact stress and building the contact stress limit state equation for contact stress reliability analysis. In this study, a mathematical relationship between design parameters and contact stress is formulated using the Kriging Metamodel. To enhance the model’s accuracy, we propose a new hybrid algorithm that merges the genetic… More >

  • Open Access


    Hybrid Optimization Algorithm for Handwritten Document Enhancement

    Shu-Chuan Chu1, Xiaomeng Yang1, Li Zhang2, Václav Snášel3, Jeng-Shyang Pan1,4,*

    CMC-Computers, Materials & Continua, Vol.78, No.3, pp. 3763-3786, 2024, DOI:10.32604/cmc.2024.048594

    Abstract The Gannet Optimization Algorithm (GOA) and the Whale Optimization Algorithm (WOA) demonstrate strong performance; however, there remains room for improvement in convergence and practical applications. This study introduces a hybrid optimization algorithm, named the adaptive inertia weight whale optimization algorithm and gannet optimization algorithm (AIWGOA), which addresses challenges in enhancing handwritten documents. The hybrid strategy integrates the strengths of both algorithms, significantly enhancing their capabilities, whereas the adaptive parameter strategy mitigates the need for manual parameter setting. By amalgamating the hybrid strategy and parameter-adaptive approach, the Gannet Optimization Algorithm was refined to yield the AIWGOA. More >

  • Open Access


    Hybrid Algorithm-Driven Smart Logistics Optimization in IoT-Based Cyber-Physical Systems

    Abdulwahab Ali Almazroi1,*, Nasir Ayub2

    CMC-Computers, Materials & Continua, Vol.77, No.3, pp. 3921-3942, 2023, DOI:10.32604/cmc.2023.046602

    Abstract Effectively managing complex logistics data is essential for development sustainability and growth, especially in optimizing distribution routes. This article addresses the limitations of current logistics path optimization methods, such as inefficiencies and high operational costs. To overcome these drawbacks, we introduce the Hybrid Firefly-Spotted Hyena Optimization (HFSHO) algorithm, a novel approach that combines the rapid exploration and global search abilities of the Firefly Algorithm (FO) with the localized search and region-exploitation skills of the Spotted Hyena Optimization Algorithm (SHO). HFSHO aims to improve logistics path optimization and reduce operational costs. The algorithm’s effectiveness is systematically… More >

  • Open Access


    Near Term Hybrid Quantum Computing Solution to the Matrix Riccati Equations

    Augusto González Bonorino1,*, Malick Ndiaye2, Casimer DeCusatis2

    Journal of Quantum Computing, Vol.4, No.3, pp. 135-146, 2022, DOI:10.32604/jqc.2022.036706

    Abstract The well-known Riccati differential equations play a key role in many fields, including problems in protein folding, control and stabilization, stochastic control, and cybersecurity (risk analysis and malware propagation). Quantum computer algorithms have the potential to implement faster approximate solutions to the Riccati equations compared with strictly classical algorithms. While systems with many qubits are still under development, there is significant interest in developing algorithms for near-term quantum computers to determine their accuracy and limitations. In this paper, we propose a hybrid quantum-classical algorithm, the Matrix Riccati Solver (MRS). This approach uses a transformation of More >

  • Open Access


    Automated X-ray Defect Inspection on Occluded BGA Balls Using Hybrid Algorithm

    Ki-Yeol Eom1, Byungseok Min2,*

    CMC-Computers, Materials & Continua, Vol.75, No.3, pp. 6337-6350, 2023, DOI:10.32604/cmc.2023.035336

    Abstract Automated X-ray defect inspection of occluded objects has been an essential topic in semiconductors, autonomous vehicles, and artificial intelligence devices. However, there are few solutions to segment occluded objects in the X-ray inspection efficiently. In particular, in the Ball Grid Array inspection of X-ray images, it is difficult to accurately segment the regions of occluded solder balls and detect defects inside solder balls. In this paper, we present a novel automatic inspection algorithm that segments solder balls, and detects defects fast and efficiently when solder balls are occluded. The proposed algorithm consists of two stages.… More >

  • Open Access


    Enhanced Detection of Cerebral Atherosclerosis Using Hybrid Algorithm of Image Segmentation

    Shakunthala Masi*, Helenprabha Kuttiappan

    Intelligent Automation & Soft Computing, Vol.36, No.1, pp. 733-744, 2023, DOI:10.32604/iasc.2023.025919

    Abstract In medical science for envisaging human body’s phenomenal structure a major part has been driven by image processing techniques. Major objective of this work is to detect of cerebral atherosclerosis for image segmentation application. Detection of some abnormal structures in human body has become a difficult task to complete with some simple images. For expounding and distinguishing neural architecture of human brain in an effective manner, MRI (Magnetic Resonance Imaging) is one of the most suitable and significant technique. Here we work on detection of Cerebral Atherosclerosis from MRI images of patients. Cerebral Atherosclerosis is… More >

  • Open Access


    Detecting and Preventing of Attacks in Cloud Computing Using Hybrid Algorithm

    R. S. Aashmi1, T. Jaya2,*

    Intelligent Automation & Soft Computing, Vol.35, No.1, pp. 79-95, 2023, DOI:10.32604/iasc.2023.024291


    Cloud computing is the technology that is currently used to provide users with infrastructure, platform, and software services effectively. Under this system, Platform as a Service (PaaS) offers a medium headed for a web development platform that uniformly distributes the requests and resources. Hackers using Denial of service (DoS) and Distributed Denial of Service (DDoS) attacks abruptly interrupt these requests. Even though several existing methods like signature-based, statistical anomaly-based, and stateful protocol analysis are available, they are not sufficient enough to get rid of Denial of service (DoS) and Distributed Denial of Service (DDoS) attacks

    More >

  • Open Access


    A Hybrid Neural Network-based Approach for Forecasting Water Demand

    Al-Batool Al-Ghamdi1,*, Souad Kamel2, Mashael Khayyat3

    CMC-Computers, Materials & Continua, Vol.73, No.1, pp. 1365-1383, 2022, DOI:10.32604/cmc.2022.026246

    Abstract Water is a vital resource. It supports a multitude of industries, civilizations, and agriculture. However, climatic conditions impact water availability, particularly in desert areas where the temperature is high, and rain is scarce. Therefore, it is crucial to forecast water demand to provide it to sectors either on regular or emergency days. The study aims to develop an accurate model to forecast daily water demand under the impact of climatic conditions. This forecasting is known as a multivariate time series because it uses both the historical data of water demand and climatic conditions to forecast… More >

  • Open Access


    A Novel Approach Based on Hybrid Algorithm for Energy Efficient Cluster Head Identification in Wireless Sensor Networks

    C. Ram Kumar1,*, K. Murali Krishna2, Mohammad Shabbir Alam3, K. Vigneshwaran4, Sridharan Kannan5, C. Bharatiraja6

    Computer Systems Science and Engineering, Vol.43, No.1, pp. 259-273, 2022, DOI:10.32604/csse.2022.023477

    Abstract The Wireless Sensor Networks (WSN) is a self-organizing network with random deployment of wireless nodes that connects each other for effective monitoring and data transmission. The clustering technique employed to group the collection of nodes for data transmission and each node is assigned with a cluster head. The major concern with the identification of the cluster head is the consideration of energy consumption and hence this paper proposes an hybrid model which forms an energy efficient cluster head in the Wireless Sensor Network. The proposed model is a hybridization of Glowworm Swarm Optimization (GSO) and More >

  • Open Access


    Hybrid In-Vehicle Background Noise Reduction for Robust Speech Recognition: The Possibilities of Next Generation 5G Data Networks

    Radek Martinek1, Jan Baros1, Rene Jaros1, Lukas Danys1,*, Jan Nedoma2

    CMC-Computers, Materials & Continua, Vol.71, No.3, pp. 4659-4676, 2022, DOI:10.32604/cmc.2022.019904

    Abstract This pilot study focuses on employment of hybrid LMS-ICA system for in-vehicle background noise reduction. Modern vehicles are nowadays increasingly supporting voice commands, which are one of the pillars of autonomous and SMART vehicles. Robust speaker recognition for context-aware in-vehicle applications is limited to a certain extent by in-vehicle background noise. This article presents the new concept of a hybrid system, which is implemented as a virtual instrument. The highly modular concept of the virtual car used in combination with real recordings of various driving scenarios enables effective testing of the investigated methods of in-vehicle More >

Displaying 1-10 on page 1 of 17. Per Page