Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (16)
  • Open Access

    ARTICLE

    Bioconvective Hybrid Flow with Microorganisms Migration and Buongiorno’s Model under Convective Condition

    Azad Hussain1, Saira Raiz1, Ali Hassan1,2,*, Mohamed R. Ali3, Abdulkafi Mohammed Saeed4

    Frontiers in Heat and Mass Transfer, Vol.22, No.2, pp. 433-453, 2024, DOI:10.32604/fhmt.2024.044121

    Abstract Heat transfer improves significantly when the working fluid has high thermal conductivity. Heat transfer can be found in fields such as food processing, solar through collectors, and drug delivery. Considering this notable fact, this work is focused on investigating the bio-convection-enhanced heat transfer in the existence of convective boundary conditions in the flow of hybrid nanofluid across a stretching surface. Buongiorno fluid model with hybrid nanoparticles has been employed along the swimming microorganisms to investigate the mixture base working fluid. The developed nonlinear flow governing equations have been tackled numerically with the help of the bvp4c. The effects of relevant… More > Graphic Abstract

    Bioconvective Hybrid Flow with Microorganisms Migration and Buongiorno’s Model under Convective Condition

  • Open Access

    ARTICLE

    Radiative Blood-Based Hybrid Copper-Graphene Nanoliquid Flows along a Source-Heated Leaning Cylinder

    Siti Nur Ainsyah Ghani1, Noor Fadiya Mohd Noor1,2,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.1, pp. 1017-1037, 2024, DOI:10.32604/cmes.2023.031372

    Abstract Variant graphene, graphene oxides (GO), and graphene nanoplatelets (GNP) dispersed in blood-based copper (Cu) nanoliquids over a leaning permeable cylinder are the focus of this study. These forms of graphene are highly beneficial in the biological and medical fields for cancer therapy, anti-infection measures, and drug delivery. The non-Newtonian Sutterby (blood-based) hybrid nanoliquid flows are generalized within the context of the Tiwari-Das model to simulate the effects of radiation and heating sources. The governing partial differential equations are reformulated into a nonlinear set of ordinary differential equations using similar transformational expressions. These equations are then transformed into boundary value problems… More >

  • Open Access

    ARTICLE

    Heat Transfer Characteristics for Solar Energy Aspect on the Flow of Tangent Hyperbolic Hybrid Nanofluid over a Sensor Wedge and Stagnation Point Surface

    Asmaa Habib Alanzi, N. Ameer Ahammad*

    Frontiers in Heat and Mass Transfer, Vol.21, pp. 179-197, 2023, DOI:10.32604/fhmt.2023.042009

    Abstract The conversion of solar radiation to thermal energy has recently attracted a lot of interest as the requirement for renewable heat and power grows. Due to their enhanced ability to promote heat transmission, nanofluids can significantly contribute to enhancing the efficiency of solar-thermal systems. This article focus solar energy aspect on the effects of the thermal radiation in the flow of a hyperbolic tangent nanofluid containing magnesium oxide (MgO) and silver (Ag) are the nanoparticle with the base fluid as kerosene through a wedge and stagnation. The system of hybrid nanofluid transport equations are transformed into ordinary differential systems using… More >

  • Open Access

    ARTICLE

    Numerical Examination of Free Convection Flow of Casson Ternary Hybrid Nanofluid across Magnetized Stretching Sheet Impacted by Newtonian Heating

    Mohammed Z. Swalmeh1,*, Firas A. Alwawi2, A. A. Altawallbeh3, Wejdan Mesa’adeen4, Feras M. Al Faqih4, Ahmad M. Awajan4

    Frontiers in Heat and Mass Transfer, Vol.21, pp. 505-522, 2023, DOI:10.32604/fhmt.2023.044300

    Abstract In current study, the influence of magnetic field (MHD) on heat transfer of natural convection boundary layer flow in Casson ternary hybrid nanofluid past a stretching sheet is studied using numerical simulation. The Newtonian heating boundary conditions that depend on the temperature and velocity terms are taken into this investigation. The particular dimensional governing equations, for the studied problem, are converted to the system of partial differential equations utilizing adequate similarity transformation. Consequently, the system of equations is numerically solved using well-known Kellar box numerical techniques. The obtained numerical results are in excellent approval with previous literature results. The existence… More >

  • Open Access

    ARTICLE

    Flow Breakdown of Hybrid Nanofluid on a Rigid Surface with Power Law Fluid as Lubricated Layers

    Mirza Naveed Jahangeer Baig1, Nadeem Salamat1, Sohail Nadeem2,3,*, Naeem Ullah2, Mohamed Bechir Ben Hamida4,5,6, Hassan Ali Ghazwani7, Sayed M. Eldin8, A. S. Al-Shafay9

    CMES-Computer Modeling in Engineering & Sciences, Vol.138, No.2, pp. 1485-1499, 2024, DOI:10.32604/cmes.2023.029351

    Abstract This work investigates an oblique stagnation point flow of hybrid nanofluid over a rigid surface with power law fluid as lubricated layers. Copper (Cu) and Silver (Ag) solid particles are used as hybrid particles acting in water H2O as a base fluid. The mathematical formulation of flow configuration is presented in terms of differential system that is nonlinear in nature. The thermal aspects of the flow field are also investigated by assuming the surface is a heated surface with a constant temperature T. Numerical solutions to the governing mathematical model are calculated by the RK45 algorithm. The results based on… More >

  • Open Access

    ARTICLE

    Computational Analysis of Heat and Mass Transfer in Magnetized Darcy-Forchheimer Hybrid Nanofluid Flow with Porous Medium and Slip Effects

    Nosheen Fatima1, Nabeela Kousar1, Khalil Ur Rehman2,3,*, Wasfi Shatanawi2,4,5

    CMES-Computer Modeling in Engineering & Sciences, Vol.137, No.3, pp. 2311-2330, 2023, DOI:10.32604/cmes.2023.026994

    Abstract A computational analysis of magnetized hybrid Darcy-Forchheimer nanofluid flow across a flat surface is presented in this work. For the study of heat and mass transfer aspects viscous dissipation, activation energy, Joule heating, thermal radiation, and heat generation effects are considered. The suspension of nanoparticles singlewalled carbon nanotubes (SWCNTs) and multi-walled carbon nanotubes (MWCNTs) are created by hybrid nanofluids. However, single-walled carbon nanotubes (SWCNTs) produce nanofluids, with water acting as conventional fluid, respectively. Nonlinear partial differential equations (PDEs) that describe the ultimate flow are converted to nonlinear ordinary differential equations (ODEs) using appropriate similarity transformation. The ODEs are dealt with… More >

  • Open Access

    ARTICLE

    HEAT TRANSFER INTENSIFICATION IN A 3D CAVITY USING HYBRID CNT-AL2O3 (15-85%) NANOFLUID

    Mohammed A. Tashkandia , Abdelkarim Aydib,*

    Frontiers in Heat and Mass Transfer, Vol.11, pp. 1-6, 2018, DOI:10.5098/hmt.11.27

    Abstract In this work, a computational study of convective heat transfer in a hybrid CNT-Al2O3/water nanofluid cavity filled. The main considered parameters are the Rayleigh number and nanoparticles volume fraction. Results are presented in terms of flow structure, temperature field, and average Nusselt number. Since CNT and Al2O3 have different shapes to models are used to evaluate the effective thermal conductivity. It was found that both increasing Rayleigh number and nanoparticles volume fraction increase the heat transfer intensify the flow and affect the temperature field. Adding nanoparticles enhances the heat transfer due to the enhancement of the effective thermal conductivity. The… More >

  • Open Access

    ARTICLE

    DEVELOPMENT OF A HEAT PIPE AND GREY BASED TAGUCHI METHOD FOR MULTI-OUTPUT OPTIMIZATION TO IMPROVE THERMAL PERFORMANCE USING HYBRID NANOFLUIDS

    Mohammed Yunus*, Mohammad S. Alsoufi

    Frontiers in Heat and Mass Transfer, Vol.12, pp. 1-8, 2019, DOI:10.5098/hmt.12.11

    Abstract Swift cooling systems, improved microprocessor chips, processors’ performance and power usage have increased production of an enormous amount of heat and high operating temperatures due to excess heat flux density in the field of microelectronics. A rapid cooling of electronic circuits and heat dissipation for the same size of pipe with the present technology as nano size circuits critically generate high heat flux beyond 100 W/cm2 is currently the challenging task with which we are presented. Cooling in the form of heat transfer should be managed using both thermal conductivity (evaporation) and phase transition (condensation) between the two solid interfaces… More >

  • Open Access

    ARTICLE

    NUMERICAL ANALYSIS OF CASSON FERRO-HYBRID NANOFLUID FLOW OVER A STRETCHING SHEET UNDER CONSTANT WALL TEMPERATURE BOUNDARY CONDITION

    Mohammed Z. Swalmeh*

    Frontiers in Heat and Mass Transfer, Vol.18, pp. 1-8, 2022, DOI:10.5098/hmt.18.12

    Abstract Heat transfer characteristics for free convection boundary layer flow with a Ferro-hybrid nanofluid in the Casson field, over a stretching sheet, have been numerically investigated and tested. The constant wall temperature boundary condition was applied in this study. The dimensional governing equations were transformed to partial differential equations (PDEs) and then solved numerically by an implicit finite difference scheme known as Keller box method. The Numerical findings were presented by tabular and figures by using MATLAB program. These numerical findings were gained according to considering and analyzing the impacts of Ferro-hybrid nanofluids Casson parameters, on the local skin friction coefficient… More >

  • Open Access

    ARTICLE

    Analysis of a Stagnation Point Flow with Hybrid Nanoparticles over a Porous Medium

    U. S. Mahabaleshwar1, T. Anusha1 and M. Hatami2,*

    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.2, pp. 541-567, 2023, DOI:10.32604/fdmp.2022.022002

    Abstract The unsteady stagnation-point flow of a hybrid nanofluid over a stretching/shrinking sheet embedded in a porous medium with mass transpiration and chemical reactions is considered. The momentum and mass transfer problems are combined to form a system of partial differential equations, which is converted into a set of ordinary differential equations via similarity transformation. These ordinary differential equations are solved analytically to obtain the solution for velocity and concentration profiles in exponential and hypergeometric forms, respectively. The concentration profile is obtained for four different cases namely constant wall concentration, uniform mass flux, general power law wall con-centration and general power… More >

Displaying 1-10 on page 1 of 16. Per Page