Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (8,175)
  • Open Access

    ARTICLE

    Seed, germination and seedling characterization of Cologania broussonetii (Balb.) DC.

    Lovey1 RJ, P Perissé2, C V ieyra3, JC Coraglio3

    Phyton-International Journal of Experimental Botany, Vol.79, pp. 5-10, 2010, DOI:10.32604/phyton.2010.79.005

    Abstract Cologania broussonetii (Balb.) DC. (Fabaceae) grows from the Bolivian eastern Andes to the north west of Argentina, Cordoba hills and San Luis Province. It is recognized as a native forage. The objectives of this study were to characterize the seed, the germination and the seedling of C. broussonetii. Seed structure was characterized through free hand sections and analyzed with optical and stereoscopic microscopy. The germination assay treatments were: (1) intact non-scarfied seeds at 25 °C constant, (2) scarified seeds at 25 °C constant, (3) intact non-scarified seeds at 20-30 °C alternating, and (4) scarified seeds at 20-30… More >

  • Open Access

    ARTICLE

    Efficient Fracture Analysis of 2D Crack Problems by the MVCCI Method

    H. Theilig1

    Structural Durability & Health Monitoring, Vol.6, No.3&4, pp. 239-272, 2010, DOI:10.3970/sdhm.2010.006.239

    Abstract The aim of this paper is to give an overview to some problems and solutions of the fracture analysis of 2D structures. It will be shown that the common computer-aided two-dimensional fatigue crack path simulation can be considerably improved in accuracy by using a predictor-corrector procedure in combination with the modified virtual crack closure integral (MVCCI) method. Furthermore the paper presents an improved finite element technique for the calculation of stress intensity factors of mixed mode problems by the MVCCI Method. The procedure is devised to compute the separated strain energy release rates by using the… More >

  • Open Access

    ARTICLE

    Identification of Material Parameters for Structural Analyses

    W. Brocks1, I. Scheider2

    Structural Durability & Health Monitoring, Vol.6, No.3&4, pp. 189-212, 2010, DOI:10.3970/sdhm.2010.006.189

    Abstract Material parameters are adjustable coefficients in constitutive equations of the mechanical behaviour. Their identification requires a combined experimental and numerical approach, which results in a generally ill-posed inverse problem. Methods commonly applied in computational mechanics like optimisation and neural networks are addressed, and problems like sensitivity, uniqueness and stability are discussed. The cohesive model for describing ductile tearing is chosen as practical example to substantiate the general considerations. More >

  • Open Access

    ARTICLE

    Experimental and Numerical Investigation of 3D Mixed-Mode Crack Problems in Structures

    H.A. Richard1, M. Fulland2, G. Kullmer1, N.-H. Schirmeisen1

    Structural Durability & Health Monitoring, Vol.6, No.3&4, pp. 161-188, 2010, DOI:10.3970/sdhm.2010.006.161

    Abstract Fracture processes in real structures are in many cases of a three dimensional (3D) character. In this paper some basic problems of 3D-fracture processes are considered and discussed, in particular for general mixed-mode loading conditions, when modes I and II and III are superimposed. For experimental investigations an AFM-specimen is under consideration, while numerical simulations are carried out with the program ADAPCRACK3D. More >

  • Open Access

    ARTICLE

    Application of GB/T 19426-2004 “Safety Assessment for In-Service Pressure Vessels Containing Defects” to the Long-Distance Oil Pipeline

    Zihua Zhao1, Yu Zhou, Zheng Zhang, Qunpeng Zhong

    Structural Durability & Health Monitoring, Vol.6, No.2, pp. 101-112, 2010, DOI:10.3970/sdhm.2010.006.101

    Abstract Annex H"Safety assessment method for straight pressure pipeline with local thinning area" of "Safety assessment for in-service pressure vessels containing defects"(GB/T 19426-2004) is briefly introduced. The maximum allowable hanging (unsupported) length of straight pressure pipeline with a local thinning area (LTA) is then determined by using this assessment method. This is the first time that the assessment method has been applied to the long-distance oil pipeline. As a typical case, we have analyzed a length of straight pressure pipeline with LTA and gave the relationship of maximum allowable unsupported length, operating pressure and the depth More >

  • Open Access

    ARTICLE

    Weight Functions for Structural Integrity Assessment: Method and Applications

    Xue-Ren Wu1

    Structural Durability & Health Monitoring, Vol.6, No.2, pp. 77-88, 2010, DOI:10.3970/sdhm.2010.006.077

    Abstract A review of the state-of-the-art is presented on the weight function method for fracture-mechanics-based structural integrity assessment with regard to crack-like defects. The weight function method provides a powerful tool for the determination of key parameters, such as stress intensity factors and crack opening displacements for cracked structural components. For two dimensional (2D) crack problems, weight functions were obtained in closed-form for both centre-and edge-crack configurations. For three dimensional(3D) cases, a combination of the closed-form 2D weight functions and the slice synthesis technique makes it possible for rapid determination of stress intensity factor at any More >

  • Open Access

    ARTICLE

    Orienting a Protein Model by Crossing Number to Generate the Characteristic Views for Identification

    Chikit Au1, Yiyu Cai2, Jianmin Zheng3, Tony Woo4

    CMES-Computer Modeling in Engineering & Sciences, Vol.68, No.3, pp. 221-238, 2010, DOI:10.3970/cmes.2010.068.221

    Abstract A protein model (such as a ribbon model) can be created from the atomic coordinates in the protein data base files. These coordinates are obtained by X-ray crystallography or NMR spectroscopy with the protein arbitrarily oriented. As such, identifying or comparing a novel structure with a known item using protein model in the protein data base can be a timely process since a large number of transformations may be involved. The identification efficiency will be improved if the protein models are uniformly oriented. This paper presents an approach to orient a protein model to generate More >

  • Open Access

    ARTICLE

    An Iterative and Adaptive Lie-Group Method for Solving the Calderón Inverse Problem

    Chein-Shan Liu1, Satya N. Atluri2

    CMES-Computer Modeling in Engineering & Sciences, Vol.64, No.3, pp. 299-326, 2010, DOI:10.3970/cmes.2010.064.299

    Abstract We solve the Calderón inverse conductivity problem [Calderón (1980, 2006)], for an elliptic type equation in a rectangular plane domain, to recover an unknown conductivity function inside the domain, from the over-specified Cauchy data on the bottom of the rectangle. The Calderón inverse problem exhibitsthree-fold simultaneous difficulties: ill-posedness of the inverse Cauchy problem, ill-posedness of the parameter identification, and no information inside the domain being available on the impedance function. In order to solve this problem, we discretize the whole domain into many sub-domains of finite strips, each with a small height. Thus the Calderón… More >

  • Open Access

    ARTICLE

    A Numerical Study of the Influence of Surface Roughness on the Convective Heat Transfer in a Gas Flow

    F. Dierich1, P.A. Nikrityuk1

    CMES-Computer Modeling in Engineering & Sciences, Vol.64, No.3, pp. 251-266, 2010, DOI:10.3970/cmes.2010.064.251

    Abstract This work presents a numerical investigation of the influence of the roughness of a cylindrical particle on the drag coefficient and the Nusselt number at low Reynolds numbers up to 40. The heated cylindrical particle is placed horizontally in a uniform flow. Immersed boundary method (IBM) with a continuous forcing on a fixed Cartesian grid is used. The governing equations are the Navier Stokes equation and the conservation of energy. A finite-volume based discretization and the SIMPLE algorithm with collocated-variables and Rie-Chow stabilization were used to solve the set of equations. Numerical simulations showed that More >

  • Open Access

    ARTICLE

    Numerical Solution of Non-Isothermal Fluid Flows Using Local Radial Basis Functions (LRBF) Interpolation and a Velocity-Correction Method

    G. C. Bourantas1, E. D. Skouras2,3, V. C. Loukopoulos4, G. C. Nikiforidis1

    CMES-Computer Modeling in Engineering & Sciences, Vol.64, No.2, pp. 187-212, 2010, DOI:10.3970/cmes.2010.064.187

    Abstract Meshfree point collocation method (MPCM) is developed, solving the velocity-vorticity formulation of Navier-Stokes equations, for two-dimensional, steady state incompressible viscous flow problems in the presence of heat transfer. Particular emphasis is placed on the application of the velocity-correction method, ensuring the continuity equation. The Gaussian Radial Basis Functions (GRBF) interpolation is employed to construct the shape functions in conjunction with the framework of the point collocation method. The cases of forced, natural and mixed convection in a 2D rectangular enclosure are examined. The accuracy and the stability of the proposed scheme are demonstrated through three More >

Displaying 7411-7420 on page 742 of 8175. Per Page