Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (367)
  • Open Access

    ARTICLE

    NUMERICAL STUDY OF THE GASKET THERMAL CONDUCTIVITY EFFECT ON THE THERMAL CONTACT RESISTANCE BETWEEN TWO SOLIDS IN CONTACT

    Rachid Chadoulia,b,*, Frédéric Lebona, Iulian Rosua , Mohammed Makhloufb

    Frontiers in Heat and Mass Transfer, Vol.8, pp. 1-6, 2017, DOI:10.5098/hmt.8.30

    Abstract In this paper, a numerical model investigating the impact of gasket thermal quality on the reduction in the thermal contact resistance (TCR) between two solids is presented and validated analytically. The model proposed is a 2D steady state model. The thermal conductivity of the solid materials ranges from 20 to 390 W/m·K, and the gasket thermal conductivity ranges from 0.16W/m·K (TC of rubber) to and 5W/m·K (TC of thermal paste). As expected, the results obtained clearly confirm that the gasket significantly improves the heat transfer between two solids in contact, and in particular that the TCR is decreased with increasing… More >

  • Open Access

    ARTICLE

    HEAT TRANSFER ON MHD NANOFLUID FLOW OVER A SEMI INFINITE FLAT PLATE EMBEDDED IN A POROUS MEDIUM WITH RADIATION ABSORPTION, HEAT SOURCE AND DIFFUSION THERMO EFFECT

    N. Vedavathia , G. Dharmaiahb,* , K.S. Balamuruganc, J. Prakashd

    Frontiers in Heat and Mass Transfer, Vol.9, pp. 1-8, 2017, DOI:10.5098/hmt.9.38

    Abstract The effects of radiation absorption, first order chemical reaction and diffusion thermo on MHD free convective heat and mass transfer flow of a nanofluid past a semi infinite vertical flat plate are analyzed. The temperature and concentration at the surface are assumed to be oscillatory type. Four types of cubic nano particles which are uniform and size namely, Silver (Ag), Aluminum (Al2O3), Copper (Cu) and Titanium Oxide (TiO2) with water as a base fluid is taken into account. The set of ordinary differential equations are solved by using regular perturbation technique. The impact of various flow parameters on nanofluid velocity,… More >

  • Open Access

    ARTICLE

    FLOW AND HEAT TRANSFER OF CARBON NANOFLUIDS OVER A VERTICAL PLATE

    Mahantesh M Nandeppanavara,*, S. Shakunthalab

    Frontiers in Heat and Mass Transfer, Vol.9, pp. 1-10, 2017, DOI:10.5098/hmt.9.27

    Abstract In this paper, the buoyancy effect on flow and heat transfer characteristics of nanofluid in presence of carbon nanotubes due to a vertical plate is investigated. The obtained nonlinear PDE’s are converted to the non-linear ordinary differential equations by applying the similarity transformations corresponding to the boundary conditions. These boundary value problems are solved numerically using fourth order Runge-kutta method together with the efficient shooting iteration scheme. The nature of the flow and heat transfer are plotted and discussed in detail. It is noticed that buoyancy effect is very useful in cooling the system and present results compared with previously… More >

  • Open Access

    ARTICLE

    A COMPARATIVE STUDY OF THERMAL RADIATION EFFECTS ON MHD FLOW OF NANOFLUIDS AND HEAT TRANSFER OVER A STRETCHING SHEET

    T. Sravan Kumar, B. Rushi Kumar*

    Frontiers in Heat and Mass Transfer, Vol.9, pp. 1-7, 2017, DOI:10.5098/hmt.9.13

    Abstract In this work, the steady natural convective boundary layer flow of nanofluid and heat transfer over a stretching sheet in the presence of a uniform transverse magnetic field is investigated. We consider two different base fluids and three different nanoparticles were examined as nanofluid. A new model was used in the simulation of nanofluid. Similarity transformations are used to obtain a system of nonlinear ordinary differential equations. The resulting equations are solved numerically by shooting method with Runge-Kutta fourth order scheme (MATLAB package). The effects of various parameters describing the transport in the presence of thermal radiation, buoyancy parameter, magnetic… More >

  • Open Access

    ARTICLE

    HEAT EXCHANGES INTENSIFICATION THROUGH A FLAT PLAT SOLAR COLLECTOR BY USING NANOFLUIDS AS WORKING FLUID

    A. Maouassia,b,*, A. Baghidjaa,b, S. Douadc , N. Zeraibic

    Frontiers in Heat and Mass Transfer, Vol.10, pp. 1-7, 2018, DOI:10.5098/hmt.10.35

    Abstract This paper illustrates how practical application of nanofluids as working fluid to enhance solar flat plate collector efficiency. A numerical investigation of laminar convective heat transfer flow throw a solar collector is conducted, by using CuO-water nanofluids. The effectiveness of these nanofluids is compared to conventional working fluid (water), wherein Reynolds number and nanoparticle volume concentration in the ranges of 25– 900 and 0–10 % respectively. The effects of Reynolds number and nanoparticles concentration on the skin-friction and heat transfer coefficients are presented and discussed later in this paper. Results show that the heat transfer increases with increasing both nanoparticles… More >

  • Open Access

    ARTICLE

    IMPACT OF THERMAL RADIATION AND CHEMICAL REACTION ON UNSTEADY 2D FLOW OF MAGNETIC-NANOFLUIDS OVER AN ELONGATED PLATE EMBEDDED WITH FERROUS NANOPARTICLES

    S.P. Samrat, C. Sulochana* , G.P. Ashwinkumar

    Frontiers in Heat and Mass Transfer, Vol.10, pp. 1-8, 2018, DOI:10.5098/hmt.10.31

    Abstract This study reports the flow, thermal and concentration attributes of magnetic-nanofluids past an elongated plate with thermal radiation and chemical reaction. The flow considered is two-dimensional and time-dependent. The pressure gradient and ohmic heating terms are neglected in this analysis. The flow governing PDEs are transformed into ODEs using appropriate conversions. Further, the set of ODEs are solved analytically using perturbation technique. The flow quantities such as velocity, thermal and concentration fields are discussed under the influence of various pertinent parameters namely volume fraction of nanoparticle, magnetic field, stretching parameter, Soret number, radiation and chemical reaction with the assistance of… More >

  • Open Access

    ARTICLE

    DOUBLE-DIFFUSIVE NATURAL CONVECTION OF LOW PRANDTL NUMBER LIQUIDS WITH SORET AND DUFOUR EFFECTS

    Gang Qiua , Mo Yanga,*, Jin Wangb , Yuwen Zhangc

    Frontiers in Heat and Mass Transfer, Vol.10, pp. 1-8, 2018, DOI:10.5098/hmt.10.24

    Abstract An unsteady numerical model for double-diffusive natural convection of low Prandtl number liquids with Soret and Dufour effects inside the horizontal cavity is developed. The thermosolutal model is solved numerically using the SIMPLE algorithm with QUICK scheme. The flow field, temperature and concentration distributions for different buoyancy ratios, Rayleigh numbers and aspect ratios under different Prandtl numbers are studied systematically. The results reveal that the flow structure develops from conduction-dominated to convection as buoyancy ratio increases under different Prandtl numbers. Heat transfer intensity keeps constant and mass transfer intensity grows slowly before a critical point as Rayleigh number increases for… More >

  • Open Access

    REVIEW

    A Review on Intelligent Detection and Classification of Power Quality Disturbances: Trends, Methodologies, and Prospects

    Yanjun Yan, Kai Chen*, Hang Geng, Wenqian Fan, Xinrui Zhou

    CMES-Computer Modeling in Engineering & Sciences, Vol.137, No.2, pp. 1345-1379, 2023, DOI:10.32604/cmes.2023.027252

    Abstract With increasing global concerns about clean energy in smart grids, the detection of power quality disturbances (PQDs) caused by energy instability is becoming more and more prominent. It is well acknowledged that the PQD effects on power grid equipment are destructive and hazardous, which causes irreversible damage to underlying electrical/electronic equipment of the concerned intelligent grids. In order to ensure safe and reliable equipment implementation, appropriate PQD detection technologies must be adopted to avoid such adverse effects. This paper summarizes the newly proposed and traditional PQD detection techniques in order to give a quick start to new researchers in the… More > Graphic Abstract

    A Review on Intelligent Detection and Classification of Power Quality Disturbances: Trends, Methodologies, and Prospects

  • Open Access

    ARTICLE

    Ensemble-Based Approach for Efficient Intrusion Detection in Network Traffic

    Ammar Almomani1,2,*, Iman Akour3, Ahmed M. Manasrah4,5, Omar Almomani6, Mohammad Alauthman7, Esra’a Abdullah1, Amaal Al Shwait1, Razan Al Sharaa1

    Intelligent Automation & Soft Computing, Vol.37, No.2, pp. 2499-2517, 2023, DOI:10.32604/iasc.2023.039687

    Abstract The exponential growth of Internet and network usage has necessitated heightened security measures to protect against data and network breaches. Intrusions, executed through network packets, pose a significant challenge for firewalls to detect and prevent due to the similarity between legitimate and intrusion traffic. The vast network traffic volume also complicates most network monitoring systems and algorithms. Several intrusion detection methods have been proposed, with machine learning techniques regarded as promising for dealing with these incidents. This study presents an Intrusion Detection System Based on Stacking Ensemble Learning base (Random Forest, Decision Tree, and k-Nearest-Neighbors). The proposed system employs pre-processing… More >

  • Open Access

    ARTICLE

    Intrusion Detection in the Internet of Things Using Fusion of GRU-LSTM Deep Learning Model

    Mohammad S. Al-kahtani1, Zahid Mehmood2,3,*, Tariq Sadad4, Islam Zada5, Gauhar Ali6, Mohammed ElAffendi6

    Intelligent Automation & Soft Computing, Vol.37, No.2, pp. 2279-2290, 2023, DOI:10.32604/iasc.2023.037673

    Abstract Cybersecurity threats are increasing rapidly as hackers use advanced techniques. As a result, cybersecurity has now a significant factor in protecting organizational limits. Intrusion detection systems (IDSs) are used in networks to flag serious issues during network management, including identifying malicious traffic, which is a challenge. It remains an open contest over how to learn features in IDS since current approaches use deep learning methods. Hybrid learning, which combines swarm intelligence and evolution, is gaining attention for further improvement against cyber threats. In this study, we employed a PSO-GA (fusion of particle swarm optimization (PSO) and genetic algorithm (GA)) for… More >

Displaying 51-60 on page 6 of 367. Per Page