Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (990)
  • Open Access

    ARTICLE

    Analysis of Local Fracture Strain and Damage Limit of Advanced High Strength Steels using Measured Displacement Fields and FEM

    N. Ma1,2, K. Sato3, K. Takada4

    CMC-Computers, Materials & Continua, Vol.46, No.3, pp. 195-219, 2015, DOI:10.3970/cmc.2015.046.195

    Abstract The local mechanical behaviors of advanced high strength steels undergoing a very large strain from uniform plastic deformation to fracture were investigated with the aid of a measured displacement field and a measurement based FEM. As a measurement method, a digital image grid method (DIGM) was developed and the three-direction transient displacement field on uniaxial tensile test pieces was measured. Combining the measured transient displacement field with the finite element method, a measurement based FEM (M-FEM) was developed for the computation of distribution of the local strains, local stresses and ductile damage accumulation in a tensile test piece. Furthermore, the… More >

  • Open Access

    ARTICLE

    The Influence of Gravitational Field on Generalized Thermoelasticity with Two-Temperature under Three-Phase-Lag Model

    Mohamed I. A. Othman1,2,3, W. M. Hasona2,4, Nehal T. Mansour2,5

    CMC-Computers, Materials & Continua, Vol.45, No.3, pp. 203-220, 2015, DOI:10.3970/cmc.2015.045.203

    Abstract The problem of the generalized thermoelastic medium for three different theories under the effect of a gravitational field is investigated. The Lord- Shulman, Green-Naghdi III, three-phase-lag theories are discussed with twotemperature. The normal mode analysis is used to obtain the analytical expressions of the displacement components, force stress, thermodynamic temperature and conductive temperature. The numerical results are given and presented graphically, when the thermal force is applied. Comparisons are made with the results predicted by three-phase-lag model, Green-Naghdi III and Lord-Shulman theories in the presence and absence of gravity as well as two temperature. More >

  • Open Access

    ARTICLE

    Numerical Studies on Stratified Rock Failure Based on Digital Image Processing Technique at Mesoscale

    Ang Li1, Guo-jian Shao1,2, Pei-rong Du3, Sheng-yong Ding1, Jing-bo Su4

    CMC-Computers, Materials & Continua, Vol.45, No.1, pp. 17-38, 2015, DOI:10.3970/cmc.2015.045.017

    Abstract This paper investigates the failure behaviors of stratified rocks under uniaxial compression using a digital image processing (DIP) based finite difference method (FDM). The two-dimensional (2D) mesostructure of stratified rocks, represented as the internal spatial distribution of two main rock materials (marble and greenschist), is first identified with the DIP technique. And then the binaryzation image information is used to generate the finite difference grid. Finally, the failure behaviors of stratified rock samples are simulated by FDM considering the inhomogeneity of rock materials. In the DIP, an image segmentation algorithm based on seeded region growing (SRG) is proposed, instead of… More >

  • Open Access

    ARTICLE

    Dynamic Instability of Rectangular Composite Plates under Parametric Excitation

    Meng-Kao Yeh1, Chia-Shien Liu2, Chien-Chang Chen3

    CMC-Computers, Materials & Continua, Vol.39, No.1, pp. 3-20, 2014, DOI:10.3970/cmc.2014.039.003

    Abstract The dynamic instability of rectangular graphite/epoxy composite plates under parametric excitation was investigated analytically and experimentally. In analysis, the dynamic system of the composite plate, obtained based on the assumedmodes method, is a general form of Mathieu’s equation, including parametrically excited terms. The instability regions of the system, each separated by two transition curves, were found to be functions of the modal parameters of the composite plate and the position and the excited amplitude of the electromagnetic device on the composite plates. The fiber orientation, the aspect ratio and the layer numbers of the composite plates were varied to assess… More >

  • Open Access

    ARTICLE

    Study on Shear Test of New Style Automotive Structural Adhesive using Digital Image Correlation Method

    Bin Li1, Guo-biao Yang1, Qi-rong Zhu2, Fan Ni2

    CMC-Computers, Materials & Continua, Vol.21, No.2, pp. 107-118, 2011, DOI:10.3970/cmc.2011.021.107

    Abstract In this paper, digital image correlation method (DICM) is employed to measure the shear behavior of the spot welding specimens and the ones using adhesive under quasi-static lap shear testing. The images of the specimens' surfaces are captured in real-time by CCD and corresponding computer system. DICM is subsequently used to obtained strain by correlating the images captured before and after deformation. Then, both force-displacement curves and stress-strain curves of the specimens including the cracking load are obtained. The results and analysis show that the mechanical properties of specimens using adhesive compared with the spot welding specimens have an obvious… More >

  • Open Access

    ARTICLE

    Efficiency of Power Dissipation and Instability Criterion for Processing Maps in Hot Forming

    CMC-Computers, Materials & Continua, Vol.18, No.3, pp. 271-300, 2010, DOI:10.3970/cmc.2010.018.271

    Abstract The processing maps are a superimposition of iso-efficiency contour map and flow instability map, which are used to design hot working processing conditions in a wide variety of materials. In order to construct the processing maps, the efficiency of power dissipation and an instability criterion taking into account the contribution of strain and microstructure evolution are proposed based on a set of microstructure-based viscoplastic constitutive equations. In viscoplastic constitutive equations, the grain size of matrix phase and the dislocation density are taken as internal state variables. And, the material constants in present equations can be identified by a genetic algorithm… More >

  • Open Access

    ARTICLE

    Study of Deformation Mechanisms in Titanium by Interrupted Rolling and Channel Die Compression Tests

    Lei Bao1,2, Christophe Schuman1, Jean-sébastien Lecomte1, Marie-Jeanne Philippe1, Xiang Zhao2, Liang Zuo2, Claude Esling1

    CMC-Computers, Materials & Continua, Vol.15, No.2, pp. 113-128, 2010, DOI:10.3970/cmc.2010.015.113

    Abstract The mechanisms of small plastic deformation of titanium (T40) during cold rolling and channel die compression by means of "interrupted in situ" EBSD orientation measurements were studied. These interrupted EBSD orientation measurements allow to determine the rotation flow field which leads to the development of the crystallographic texture during the plastic deformation. Results show that during rolling, tension twins and compression twins occur and various glide systems are activated, the number of grains being larger with twins than with slip traces. In channel die compression, only tension twins are observed in some grains, whereas slip traces can be spotted in… More >

  • Open Access

    ARTICLE

    Applications of the Phase-Coded Generalized Hough Transform to Feature Detection, Analysis, and Segmentation of Digital Microstructures

    Stephen R. Niezgoda1, Surya R. Kalidindi1,2

    CMC-Computers, Materials & Continua, Vol.14, No.2, pp. 79-98, 2009, DOI:10.3970/cmc.2009.014.079

    Abstract The generalized Hough transform is a common technique for feature detection in image processing. In this paper, we develop a size invariant Hough framework for the detection of arbitrary shapes in three dimensional digital microstructure datasets. The Hough transform is efficiently implemented via kernel convolution with complex Hough filters, where shape is captured in the magnitude of the filter and scale in the complex phase. In this paper, we further generalize the concept of a Hough filter by encoding other parameters of interest (e.g. orientation of plate or fiber constituents) in the complex phase, broadening the applicability of Hough transform… More >

  • Open Access

    ARTICLE

    Synthesis of Nanocomposite Materials Using the Reprecipitation Method

    Edward Van Keuren1, MakiNishida1

    CMC-Computers, Materials & Continua, Vol.14, No.1, pp. 61-78, 2009, DOI:10.3970/cmc.2009.014.061

    Abstract Room temperature solution-based synthetic methods are an important option for the production of a wide range of nanomaterials. These methods often rely on self-assembly or self-organization of molecular precursors, with specific control of their nucleation and growth properties. We are developing strategies for the creation of multifunctional composite nanoparticles as well as models for predicting the bulk properties from the individual components and parameters of the processing conditions. One method of synthesis is a reprecipitation technique in which nanoparticle nucleation and growth is induced by the rapid injection of a molecular solution into a miscible non-solvent. Here we demonstrate that… More >

  • Open Access

    ARTICLE

    Finite Element Simulations of Four-holes Indirect Extrusion Processes of Seamless Tube

    Dyi-Cheng1, Syuan-Yi Syong1

    CMC-Computers, Materials & Continua, Vol.13, No.3, pp. 191-200, 2009, DOI:10.3970/cmc.2009.013.191

    Abstract Finite element simulations are performed to investigate the plastic deformation behavior of Ti-6Al-4V titanium alloy during its indirect extrusion through a four-hole die. The simulations assume the die, mandrel and container to be rigid bodies and ignore the temperature change induced during the extrusion process. Under various extrusion conditions, the present numerical analysis investigates the effective stress and profile of product at the exit. The relative influences of the friction factors, the temperature of billet and the eccentricity of four-hole displacement are systematically examined. The simulations focus specifically on the effects of the friction factor, billet temperature and eccentricity ratio… More >

Displaying 981-990 on page 99 of 990. Per Page