Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (1,438)
  • Open Access

    ARTICLE

    YOLO-LE: A Lightweight and Efficient UAV Aerial Image Target Detection Model

    Zhe Chen*, Yinyang Zhang, Sihao Xing

    CMC-Computers, Materials & Continua, Vol.84, No.1, pp. 1787-1803, 2025, DOI:10.32604/cmc.2025.065238 - 09 June 2025

    Abstract Unmanned aerial vehicle (UAV) imagery poses significant challenges for object detection due to extreme scale variations, high-density small targets (68% in VisDrone dataset), and complex backgrounds. While YOLO-series models achieve speed-accuracy trade-offs via fixed convolution kernels and manual feature fusion, their rigid architectures struggle with multi-scale adaptability, as exemplified by YOLOv8n’s 36.4% mAP and 13.9% small-object AP on VisDrone2019. This paper presents YOLO-LE, a lightweight framework addressing these limitations through three novel designs: (1) We introduce the C2f-Dy and LDown modules to enhance the backbone’s sensitivity to small-object features while reducing backbone parameters, thereby improving More >

  • Open Access

    ARTICLE

    Bird Species Classification Using Image Background Removal for Data Augmentation

    Yu-Xiang Zhao*, Yi Lee

    CMC-Computers, Materials & Continua, Vol.84, No.1, pp. 791-810, 2025, DOI:10.32604/cmc.2025.065048 - 09 June 2025

    Abstract Bird species classification is not only a challenging topic in artificial intelligence but also a domain closely related to environmental protection and ecological research. Additionally, performing edge computing on low-level devices using small neural networks can be an important research direction. In this paper, we use the EfficientNetV2B0 model for bird species classification, applying transfer learning on a dataset of 525 bird species. We also employ the BiRefNet model to remove backgrounds from images in the training set. The generated background-removed images are mixed with the original training set as a form of data augmentation.… More >

  • Open Access

    ARTICLE

    Image Watermarking Algorithm Base on the Second Order Derivative and Discrete Wavelet Transform

    Maazen Alsabaan1, Zaid Bin Faheem2, Yuanyuan Zhu2, Jehad Ali3,*

    CMC-Computers, Materials & Continua, Vol.84, No.1, pp. 491-512, 2025, DOI:10.32604/cmc.2025.064971 - 09 June 2025

    Abstract Image watermarking is a powerful tool for media protection and can provide promising results when combined with other defense mechanisms. Image watermarking can be used to protect the copyright of digital media by embedding a unique identifier that identifies the owner of the content. Image watermarking can also be used to verify the authenticity of digital media, such as images or videos, by ascertaining the watermark information. In this paper, a mathematical chaos-based image watermarking technique is proposed using discrete wavelet transform (DWT), chaotic map, and Laplacian operator. The DWT can be used to decompose… More >

  • Open Access

    ARTICLE

    Remote Sensing Image Information Granulation Transformer for Semantic Segmentation

    Haoyang Tang1,2, Kai Zeng1,2,*

    CMC-Computers, Materials & Continua, Vol.84, No.1, pp. 1485-1506, 2025, DOI:10.32604/cmc.2025.064441 - 09 June 2025

    Abstract Semantic segmentation provides important technical support for Land cover/land use (LCLU) research. By calculating the cosine similarity between feature vectors, transformer-based models can effectively capture the global information of high-resolution remote sensing images. However, the diversity of detailed and edge features within the same class of ground objects in high-resolution remote sensing images leads to a dispersed embedding distribution. The dispersed feature distribution enlarges feature vector angles and reduces cosine similarity, weakening the attention mechanism’s ability to identify the same class of ground objects. To address this challenge, remote sensing image information granulation transformer for… More >

  • Open Access

    ARTICLE

    Efficient Method for Trademark Image Retrieval: Leveraging Siamese and Triplet Networks with Examination-Informed Loss Adjustment

    Thanh Bui-Minh1, Nguyen Long Giang1, Luan Thanh Le2,*

    CMC-Computers, Materials & Continua, Vol.84, No.1, pp. 1203-1226, 2025, DOI:10.32604/cmc.2025.064403 - 09 June 2025

    Abstract Image-based similar trademark retrieval is a time-consuming and labor-intensive task in the trademark examination process. This paper aims to support trademark examiners by training Deep Convolutional Neural Network (DCNN) models for effective Trademark Image Retrieval (TIR). To achieve this goal, we first develop a novel labeling method that automatically generates hundreds of thousands of labeled similar and dissimilar trademark image pairs using accompanying data fields such as citation lists, Vienna classification (VC) codes, and trademark ownership information. This approach eliminates the need for manual labeling and provides a large-scale dataset suitable for training deep learning… More >

  • Open Access

    ARTICLE

    DNEFNET: Denoising and Frequency Domain Feature Enhancement Event Fusion Network for Image Deblurring

    Kangkang Zhao1, Yaojie Chen1,*, Jianbo Li2

    CMC-Computers, Materials & Continua, Vol.84, No.1, pp. 745-762, 2025, DOI:10.32604/cmc.2025.063906 - 09 June 2025

    Abstract Traditional cameras inevitably suffer from motion blur when facing high-speed moving objects. Event cameras, as high temporal resolution bionic cameras, record intensity changes in an asynchronous manner, and their recorded high temporal resolution information can effectively solve the problem of time information loss in motion blur. Existing event-based deblurring methods still face challenges when facing high-speed moving objects. We conducted an in-depth study of the imaging principle of event cameras. We found that the event stream contains excessive noise. The valid information is sparse. Invalid event features hinder the expression of valid features due to… More >

  • Open Access

    ARTICLE

    A Robust Image Watermarking Based on DWT and RDWT Combined with Möbius Transformations

    Atheer Alrammahi1,2, Hedieh Sajedi1,*

    CMC-Computers, Materials & Continua, Vol.84, No.1, pp. 887-918, 2025, DOI:10.32604/cmc.2025.063866 - 09 June 2025

    Abstract Ensuring digital media security through robust image watermarking is essential to prevent unauthorized distribution, tampering, and copyright infringement. This study introduces a novel hybrid watermarking framework that integrates Discrete Wavelet Transform (DWT), Redundant Discrete Wavelet Transform (RDWT), and Möbius Transformations (MT), with optimization of transformation parameters achieved via a Genetic Algorithm (GA). By combining frequency and spatial domain techniques, the proposed method significantly enhances both the imperceptibility and robustness of watermark embedding. The approach leverages DWT and RDWT for multi-resolution decomposition, enabling watermark insertion in frequency subbands that balance visibility and resistance to attacks. RDWT,… More >

  • Open Access

    ARTICLE

    A Mask-Guided Latent Low-Rank Representation Method for Infrared and Visible Image Fusion

    Kezhen Xie1,2, Syed Mohd Zahid Syed Zainal Ariffin1,*, Muhammad Izzad Ramli1

    CMC-Computers, Materials & Continua, Vol.84, No.1, pp. 997-1011, 2025, DOI:10.32604/cmc.2025.063469 - 09 June 2025

    Abstract Infrared and visible image fusion technology integrates the thermal radiation information of infrared images with the texture details of visible images to generate more informative fused images. However, existing methods often fail to distinguish salient objects from background regions, leading to detail suppression in salient regions due to global fusion strategies. This study presents a mask-guided latent low-rank representation fusion method to address this issue. First, the GrabCut algorithm is employed to extract a saliency mask, distinguishing salient regions from background regions. Then, latent low-rank representation (LatLRR) is applied to extract deep image features, enhancing More >

  • Open Access

    ARTICLE

    Hybrid Deep Learning and Optimized Feature Selection for Oil Spill Detection in Satellite Images

    Ghada Atteia1,*, Mohammed Dabboor2, Konstantinos Karantzalos3, Maali Alabdulhafith1

    CMC-Computers, Materials & Continua, Vol.84, No.1, pp. 1747-1767, 2025, DOI:10.32604/cmc.2025.063363 - 09 June 2025

    Abstract This study explores the integration of Synthetic Aperture Radar (SAR) imagery with deep learning and metaheuristic feature optimization techniques for enhanced oil spill detection. This study proposes a novel hybrid approach for oil spill detection. The introduced approach integrates deep transfer learning with the metaheuristic Binary Harris Hawk optimization (BHHO) and Principal Component Analysis (PCA) for improved feature extraction and selection from input SAR imagery. Feature transfer learning of the MobileNet convolutional neural network was employed to extract deep features from the SAR images. The BHHO and PCA algorithms were implemented to identify subsets of… More >

  • Open Access

    ARTICLE

    Image Style Transfer for Exhibition Hall Design Based on Multimodal Semantic-Enhanced Algorithm

    Qing Xie*, Ruiyun Yu

    CMC-Computers, Materials & Continua, Vol.84, No.1, pp. 1123-1144, 2025, DOI:10.32604/cmc.2025.062712 - 09 June 2025

    Abstract Although existing style transfer techniques have made significant progress in the field of image generation, there are still some challenges in the field of exhibition hall design. The existing style transfer methods mainly focus on the transformation of single dimensional features, but ignore the deep integration of content and style features in exhibition hall design. In addition, existing methods are deficient in detail retention, especially in accurately capturing and reproducing local textures and details while preserving the content image structure. In addition, point-based attention mechanisms tend to ignore the complexity and diversity of image features… More >

Displaying 1-10 on page 1 of 1438. Per Page