Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (1,327)
  • Open Access

    ARTICLE

    Steel Surface Defect Detection Using Learnable Memory Vision Transformer

    Syed Tasnimul Karim Ayon1,#, Farhan Md. Siraj1,#, Jia Uddin2,*

    CMC-Computers, Materials & Continua, Vol.82, No.1, pp. 499-520, 2025, DOI:10.32604/cmc.2025.058361 - 03 January 2025

    Abstract This study investigates the application of Learnable Memory Vision Transformers (LMViT) for detecting metal surface flaws, comparing their performance with traditional CNNs, specifically ResNet18 and ResNet50, as well as other transformer-based models including Token to Token ViT, ViT without memory, and Parallel ViT. Leveraging a widely-used steel surface defect dataset, the research applies data augmentation and t-distributed stochastic neighbor embedding (t-SNE) to enhance feature extraction and understanding. These techniques mitigated overfitting, stabilized training, and improved generalization capabilities. The LMViT model achieved a test accuracy of 97.22%, significantly outperforming ResNet18 (88.89%) and ResNet50 (88.90%), as well… More >

  • Open Access

    REVIEW

    Comprehensive Review and Analysis on Facial Emotion Recognition: Performance Insights into Deep and Traditional Learning with Current Updates and Challenges

    Amjad Rehman1, Muhammad Mujahid1, Alex Elyassih1, Bayan AlGhofaily1, Saeed Ali Omer Bahaj2,*

    CMC-Computers, Materials & Continua, Vol.82, No.1, pp. 41-72, 2025, DOI:10.32604/cmc.2024.058036 - 03 January 2025

    Abstract In computer vision and artificial intelligence, automatic facial expression-based emotion identification of humans has become a popular research and industry problem. Recent demonstrations and applications in several fields, including computer games, smart homes, expression analysis, gesture recognition, surveillance films, depression therapy, patient monitoring, anxiety, and others, have brought attention to its significant academic and commercial importance. This study emphasizes research that has only employed facial images for face expression recognition (FER), because facial expressions are a basic way that people communicate meaning to each other. The immense achievement of deep learning has resulted in a… More >

  • Open Access

    ARTICLE

    Malicious Document Detection Based on GGE Visualization

    Youhe Wang, Yi Sun*, Yujie Li, Chuanqi Zhou

    CMC-Computers, Materials & Continua, Vol.82, No.1, pp. 1233-1254, 2025, DOI:10.32604/cmc.2024.057710 - 03 January 2025

    Abstract With the development of anti-virus technology, malicious documents have gradually become the main pathway of Advanced Persistent Threat (APT) attacks, therefore, the development of effective malicious document classifiers has become particularly urgent. Currently, detection methods based on document structure and behavioral features encounter challenges in feature engineering, these methods not only have limited accuracy, but also consume large resources, and usually can only detect documents in specific formats, which lacks versatility and adaptability. To address such problems, this paper proposes a novel malicious document detection method-visualizing documents as GGE images (Grayscale, Grayscale matrix, Entropy). The… More >

  • Open Access

    ARTICLE

    A Hybrid Approach for Pavement Crack Detection Using Mask R-CNN and Vision Transformer Model

    Shorouq Alshawabkeh, Li Wu*, Daojun Dong, Yao Cheng, Liping Li

    CMC-Computers, Materials & Continua, Vol.82, No.1, pp. 561-577, 2025, DOI:10.32604/cmc.2024.057213 - 03 January 2025

    Abstract Detecting pavement cracks is critical for road safety and infrastructure management. Traditional methods, relying on manual inspection and basic image processing, are time-consuming and prone to errors. Recent deep-learning (DL) methods automate crack detection, but many still struggle with variable crack patterns and environmental conditions. This study aims to address these limitations by introducing the MaskerTransformer, a novel hybrid deep learning model that integrates the precise localization capabilities of Mask Region-based Convolutional Neural Network (Mask R-CNN) with the global contextual awareness of Vision Transformer (ViT). The research focuses on leveraging the strengths of both architectures… More >

  • Open Access

    ARTICLE

    Stochastic Augmented-Based Dual-Teaching for Semi-Supervised Medical Image Segmentation

    Hengyang Liu1, Yang Yuan1,*, Pengcheng Ren1, Chengyun Song1, Fen Luo2

    CMC-Computers, Materials & Continua, Vol.82, No.1, pp. 543-560, 2025, DOI:10.32604/cmc.2024.056478 - 03 January 2025

    Abstract Existing semi-supervised medical image segmentation algorithms use copy-paste data augmentation to correct the labeled-unlabeled data distribution mismatch. However, current copy-paste methods have three limitations: (1) training the model solely with copy-paste mixed pictures from labeled and unlabeled input loses a lot of labeled information; (2) low-quality pseudo-labels can cause confirmation bias in pseudo-supervised learning on unlabeled data; (3) the segmentation performance in low-contrast and local regions is less than optimal. We design a Stochastic Augmentation-Based Dual-Teaching Auxiliary Training Strategy (SADT), which enhances feature diversity and learns high-quality features to overcome these problems. To be more… More >

  • Open Access

    ARTICLE

    Text-Image Feature Fine-Grained Learning for Joint Multimodal Aspect-Based Sentiment Analysis

    Tianzhi Zhang1, Gang Zhou1,*, Shuang Zhang2, Shunhang Li1, Yepeng Sun1, Qiankun Pi1, Shuo Liu3

    CMC-Computers, Materials & Continua, Vol.82, No.1, pp. 279-305, 2025, DOI:10.32604/cmc.2024.055943 - 03 January 2025

    Abstract Joint Multimodal Aspect-based Sentiment Analysis (JMASA) is a significant task in the research of multimodal fine-grained sentiment analysis, which combines two subtasks: Multimodal Aspect Term Extraction (MATE) and Multimodal Aspect-oriented Sentiment Classification (MASC). Currently, most existing models for JMASA only perform text and image feature encoding from a basic level, but often neglect the in-depth analysis of unimodal intrinsic features, which may lead to the low accuracy of aspect term extraction and the poor ability of sentiment prediction due to the insufficient learning of intra-modal features. Given this problem, we propose a Text-Image Feature Fine-grained… More >

  • Open Access

    ARTICLE

    A Secure Authentication Indexed Choice-Based Graphical Password Scheme for Web Applications and ATMs

    Sameh Zarif1,2,*, Hadier Moawad2, Khalid Amin2, Abdullah Alharbi3, Wail S. Elkilani4, Shouze Tang5, Marian Wagdy6

    Computer Systems Science and Engineering, Vol.49, pp. 79-98, 2025, DOI:10.32604/csse.2024.057439 - 03 January 2025

    Abstract Authentication is the most crucial aspect of security and a predominant measure employed in cybersecurity. Cloud computing provides a shared electronic device resource for users via the internet, and the authentication techniques used must protect data from attacks. Previous approaches failed to resolve the challenge of making passwords secure, memorable, usable, and time-saving. Graphical Password (GP) is still not widely utilized in reality because consumers suffer from multiple login stages. This paper proposes an Indexed Choice-Based Graphical Password (ICGP) scheme for improving the authentication part. ICGP consists of two stages: registration and authentication. At the… More >

  • Open Access

    ARTICLE

    Multi-Stage-Based Siamese Neural Network for Seal Image Recognition

    Jianfeng Lu1,2, Xiangye Huang1, Caijin Li1, Renlin Xin1, Shanqing Zhang1,2, Mahmoud Emam1,2,3,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.142, No.1, pp. 405-423, 2025, DOI:10.32604/cmes.2024.058121 - 17 December 2024

    Abstract Seal authentication is an important task for verifying the authenticity of stamped seals used in various domains to protect legal documents from tampering and counterfeiting. Stamped seal inspection is commonly audited manually to ensure document authenticity. However, manual assessment of seal images is tedious and labor-intensive due to human errors, inconsistent placement, and completeness of the seal. Traditional image recognition systems are inadequate enough to identify seal types accurately, necessitating a neural network-based method for seal image recognition. However, neural network-based classification algorithms, such as Residual Networks (ResNet) and Visual Geometry Group with 16 layers… More >

  • Open Access

    ARTICLE

    Congruent Feature Selection Method to Improve the Efficacy of Machine Learning-Based Classification in Medical Image Processing

    Mohd Anjum1, Naoufel Kraiem2, Hong Min3,*, Ashit Kumar Dutta4, Yousef Ibrahim Daradkeh5

    CMES-Computer Modeling in Engineering & Sciences, Vol.142, No.1, pp. 357-384, 2025, DOI:10.32604/cmes.2024.057889 - 17 December 2024

    Abstract Machine learning (ML) is increasingly applied for medical image processing with appropriate learning paradigms. These applications include analyzing images of various organs, such as the brain, lung, eye, etc., to identify specific flaws/diseases for diagnosis. The primary concern of ML applications is the precise selection of flexible image features for pattern detection and region classification. Most of the extracted image features are irrelevant and lead to an increase in computation time. Therefore, this article uses an analytical learning paradigm to design a Congruent Feature Selection Method to select the most relevant image features. This process… More >

  • Open Access

    REVIEW

    Advancements in Liver Tumor Detection: A Comprehensive Review of Various Deep Learning Models

    Shanmugasundaram Hariharan1, D. Anandan2, Murugaperumal Krishnamoorthy3, Vinay Kukreja4, Nitin Goyal5, Shih-Yu Chen6,7,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.142, No.1, pp. 91-122, 2025, DOI:10.32604/cmes.2024.057214 - 17 December 2024

    Abstract Liver cancer remains a leading cause of mortality worldwide, and precise diagnostic tools are essential for effective treatment planning. Liver Tumors (LTs) vary significantly in size, shape, and location, and can present with tissues of similar intensities, making automatically segmenting and classifying LTs from abdominal tomography images crucial and challenging. This review examines recent advancements in Liver Segmentation (LS) and Tumor Segmentation (TS) algorithms, highlighting their strengths and limitations regarding precision, automation, and resilience. Performance metrics are utilized to assess key detection algorithms and analytical methods, emphasizing their effectiveness and relevance in clinical contexts. The More >

Displaying 1-10 on page 1 of 1327. Per Page