Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (1,594)
  • Open Access

    ARTICLE

    Multilevel Military Image Encryption Based on Tri-Independent Keying Approach

    Shereen S. Jumaa1, Mohsin H. Challoob2, Amjad J. Humaidi2,*

    CMC-Computers, Materials & Continua, Vol.87, No.1, 2026, DOI:10.32604/cmc.2025.074752 - 10 February 2026

    Abstract Military image encryption plays a vital role in ensuring the secure transmission of sensitive visual information from unauthorized access. This paper proposes a new Tri-independent keying method for encrypting military images. The proposed encryption method is based on multilevel security stages of pixel-level scrambling, bit-level manipulation, and block-level shuffling operations. For having a vast key space, the input password is hashed by the Secure Hash Algorithm 256-bit (SHA-256) for generating independently deterministic keys used in the multilevel stages. A piecewise pixel-level scrambling function is introduced to perform a dual flipping process controlled with an adaptive… More >

  • Open Access

    ARTICLE

    Semi-Supervised Segmentation Framework for Quantitative Analysis of Material Microstructure Images

    Yingli Liu1,2, Weiyong Tang1,2, Xiao Yang1,2, Jiancheng Yin3,*, Haihe Zhou1,2

    CMC-Computers, Materials & Continua, Vol.87, No.1, 2026, DOI:10.32604/cmc.2026.074681 - 10 February 2026

    Abstract Quantitative analysis of aluminum-silicon (Al-Si) alloy microstructure is crucial for evaluating and controlling alloy performance. Conventional analysis methods rely on manual segmentation, which is inefficient and subjective, while fully supervised deep learning approaches require extensive and expensive pixel-level annotated data. Furthermore, existing semi-supervised methods still face challenges in handling the adhesion of adjacent primary silicon particles and effectively utilizing consistency in unlabeled data. To address these issues, this paper proposes a novel semi-supervised framework for Al-Si alloy microstructure image segmentation. First, we introduce a Rotational Uncertainty Correction Strategy (RUCS). This strategy employs multi-angle rotational perturbations… More >

  • Open Access

    ARTICLE

    A Robust Image Encryption Method Based on the Randomness Properties of DNA Nucleotides

    Bassam Al-Shargabi1,*, Mohammed Abbas Fadhil Al-Husainy2, Abdelrahman Abuarqoub1, Omar Albahbouh Aldabbas3

    CMC-Computers, Materials & Continua, Vol.87, No.1, 2026, DOI:10.32604/cmc.2025.074550 - 10 February 2026

    Abstract The advent of 5G technology has significantly enhanced the transmission of images over networks, expanding data accessibility and exposure across various applications in digital technology and social media. Consequently, the protection of sensitive data has become increasingly critical. Regardless of the complexity of the encryption algorithm used, a robust and highly secure encryption key is essential, with randomness and key space being crucial factors. This paper proposes a new Robust Deoxyribonucleic Acid (RDNA) nucleotide-based encryption method. The RDNA encryption method leverages the unique properties of DNA nucleotides, including their inherent randomness and extensive key space,… More >

  • Open Access

    ARTICLE

    HMA-DER: A Hierarchical Attention and Expert Routing Framework for Accurate Gastrointestinal Disease Diagnosis

    Sara Tehsin1, Inzamam Mashood Nasir1,*, Wiem Abdelbaki2, Fadwa Alrowais3, Khalid A. Alattas4, Sultan Almutairi5, Radwa Marzouk6

    CMC-Computers, Materials & Continua, Vol.87, No.1, 2026, DOI:10.32604/cmc.2025.074416 - 10 February 2026

    Abstract Objective: Deep learning is employed increasingly in Gastroenterology (GI) endoscopy computer-aided diagnostics for polyp segmentation and multi-class disease detection. In the real world, implementation requires high accuracy, therapeutically relevant explanations, strong calibration, domain generalization, and efficiency. Current Convolutional Neural Network (CNN) and transformer models compromise border precision and global context, generate attention maps that fail to align with expert reasoning, deteriorate during cross-center changes, and exhibit inadequate calibration, hence diminishing clinical trust. Methods: HMA-DER is a hierarchical multi-attention architecture that uses dilation-enhanced residual blocks and an explainability-aware Cognitive Alignment Score (CAS) regularizer to directly align… More >

  • Open Access

    ARTICLE

    Research on Camouflage Target Detection Method Based on Edge Guidance and Multi-Scale Feature Fusion

    Tianze Yu, Jianxun Zhang*, Hongji Chen

    CMC-Computers, Materials & Continua, Vol.87, No.1, 2026, DOI:10.32604/cmc.2026.073119 - 10 February 2026

    Abstract Camouflaged Object Detection (COD) aims to identify objects that share highly similar patterns—such as texture, intensity, and color—with their surrounding environment. Due to their intrinsic resemblance to the background, camouflaged objects often exhibit vague boundaries and varying scales, making it challenging to accurately locate targets and delineate their indistinct edges. To address this, we propose a novel camouflaged object detection network called Edge-Guided and Multi-scale Fusion Network (EGMFNet), which leverages edge-guided multi-scale integration for enhanced performance. The model incorporates two innovative components: a Multi-scale Fusion Module (MSFM) and an Edge-Guided Attention Module (EGA). These designs… More >

  • Open Access

    ARTICLE

    Framework for Secure Substitution Box Construction and Its Application in Image Encryption

    Umar Hayat1,2,*, Ikram Ullah2, Muhammad Bilal2

    CMC-Computers, Materials & Continua, Vol.87, No.1, 2026, DOI:10.32604/cmc.2025.073097 - 10 February 2026

    Abstract Elliptic curve (EC) based cryptosystems gained more attention due to enhanced security than the existing public key cryptosystems. A substitution box (S-box) plays a vital role in securing modern symmetric key cryptosystems. However, the recently developed EC based algorithms usually trade off between computational efficiency and security, necessitating the design of a new algorithm with the desired cryptographic strength. To address these shortcomings, this paper proposes a new scheme based on Mordell elliptic curve (MEC) over the complex field for generating distinct, dynamic, and highly uncorrelated S-boxes. Furthermore, we count the exact number of the… More >

  • Open Access

    ARTICLE

    Boruta-LSTMAE: Feature-Enhanced Depth Image Denoising for 3D Recognition

    Fawad Salam Khan1,*, Noman Hasany2, Muzammil Ahmad Khan3, Shayan Abbas4, Sajjad Ahmed5, Muhammad Zorain6, Wai Yie Leong7,*, Susama Bagchi8, Sanjoy Kumar Debnath8

    CMC-Computers, Materials & Continua, Vol.87, No.1, 2026, DOI:10.32604/cmc.2026.072893 - 10 February 2026

    Abstract The initial noise present in the depth images obtained with RGB-D sensors is a combination of hardware limitations in addition to the environmental factors, due to the limited capabilities of sensors, which also produce poor computer vision results. The common image denoising techniques tend to remove significant image details and also remove noise, provided they are based on space and frequency filtering. The updated framework presented in this paper is a novel denoising model that makes use of Boruta-driven feature selection using a Long Short-Term Memory Autoencoder (LSTMAE). The Boruta algorithm identifies the most useful… More >

  • Open Access

    ARTICLE

    Effective Deep Learning Models for the Semantic Segmentation of 3D Human MRI Kidney Images

    Roshni Khedgaonkar1, Pravinkumar Sonsare2, Kavita Singh1, Ayman Altameem3, Hameed R. Farhan4, Salil Bharany5, Ateeq Ur Rehman6,*, Ahmad Almogren7,*

    CMC-Computers, Materials & Continua, Vol.87, No.1, 2026, DOI:10.32604/cmc.2025.072651 - 10 February 2026

    Abstract Recent studies indicate that millions of individuals suffer from renal diseases, with renal carcinoma, a type of kidney cancer, emerging as both a chronic illness and a significant cause of mortality. Magnetic Resonance Imaging (MRI) and Computed Tomography (CT) have become essential tools for diagnosing and assessing kidney disorders. However, accurate analysis of these medical images is critical for detecting and evaluating tumor severity. This study introduces an integrated hybrid framework that combines three complementary deep learning models for kidney tumor segmentation from MRI images. The proposed framework fuses a customized U-Net and Mask R-CNN… More >

  • Open Access

    ARTICLE

    A Cooperative Hybrid Learning Framework for Automated Dandruff Severity Grading

    Sin-Ye Jhong1, Hui-Che Hsu1,2, Hsin-Hua Huang2, Chih-Hsien Hsia3,4,*, Yulius Harjoseputro2,5, Yung-Yao Chen2,*

    CMC-Computers, Materials & Continua, Vol.87, No.1, 2026, DOI:10.32604/cmc.2026.072633 - 10 February 2026

    Abstract Automated grading of dandruff severity is a clinically significant but challenging task due to the inherent ordinal nature of severity levels and the high prevalence of label noise from subjective expert annotations. Standard classification methods fail to address these dual challenges, limiting their real-world performance. In this paper, a novel, three-phase training framework is proposed that learns a robust ordinal classifier directly from noisy labels. The approach synergistically combines a rank-based ordinal regression backbone with a cooperative, semi-supervised learning strategy to dynamically partition the data into clean and noisy subsets. A hybrid training objective is… More >

  • Open Access

    ARTICLE

    FDEFusion: End-to-End Infrared and Visible Image Fusion Method Based on Frequency Decomposition and Enhancement

    Ming Chen1,*, Guoqiang Ma2, Ping Qi1, Fucheng Wang1, Lin Shen3, Xiaoya Pi1

    CMC-Computers, Materials & Continua, Vol.87, No.1, 2026, DOI:10.32604/cmc.2025.072623 - 10 February 2026

    Abstract In the image fusion field, fusing infrared images (IRIs) and visible images (VIs) excelled is a key area. The differences between IRIs and VIs make it challenging to fuse both types into a high-quality image. Accordingly, efficiently combining the advantages of both images while overcoming their shortcomings is necessary. To handle this challenge, we developed an end-to-end IRI and VI fusion method based on frequency decomposition and enhancement. By applying concepts from frequency domain analysis, we used the layering mechanism to better capture the salient thermal targets from the IRIs and the rich textural information… More >

Displaying 1-10 on page 1 of 1594. Per Page