Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (1,404)
  • Open Access

    ARTICLE

    Integrating Bayesian and Convolution Neural Network for Uncertainty Estimation of Cataract from Fundus Images

    Anandhavalli Muniasamy1,*, Ashwag Alasmari2

    CMES-Computer Modeling in Engineering & Sciences, Vol.143, No.1, pp. 569-592, 2025, DOI:10.32604/cmes.2025.060484 - 11 April 2025

    Abstract The effective and timely diagnosis and treatment of ocular diseases are key to the rapid recovery of patients. Today, the mass disease that needs attention in this context is cataracts. Although deep learning has significantly advanced the analysis of ocular disease images, there is a need for a probabilistic model to generate the distributions of potential outcomes and thus make decisions related to uncertainty quantification. Therefore, this study implements a Bayesian Convolutional Neural Networks (BCNN) model for predicting cataracts by assigning probability values to the predictions. It prepares convolutional neural network (CNN) and BCNN models. More > Graphic Abstract

    Integrating Bayesian and Convolution Neural Network for Uncertainty Estimation of Cataract from Fundus Images

  • Open Access

    REVIEW

    Unveiling the Hidden Pixels: A Comprehensive Exploration of Digital Image Steganography Schemes

    Nagaraj V. Dharwadkar*

    Journal of Information Hiding and Privacy Protection, Vol.7, pp. 1-31, 2025, DOI:10.32604/jihpp.2025.060898 - 27 March 2025

    Abstract Steganography, the art of concealing information within innocuous mediums, has been practiced for centuries and continues to evolve with advances in digital technology. In the modern era, steganography has become an essential complementary tool to cryptography, offering an additional layer of security, stealth, and deniability in digital communications. With the rise of cyber threats such as hacking, malware, and phishing, it is crucial to adopt methods that protect the confidentiality and integrity of data. This review focuses specifically on text-in-image steganography, exploring a range of techniques, including Least Significant Bit (LSB), Pixel Value Differencing (PVD),… More >

  • Open Access

    ARTICLE

    Leveraging Deep Learning for Precise Chronic Bronchitis Identification in X-Ray Modalities

    Fahad Ahmad1,2,*, Saad Awadh Alanazi3, Kashaf Junaid4, Maryam Shabbir5, Asim Ali1

    CMC-Computers, Materials & Continua, Vol.83, No.1, pp. 381-405, 2025, DOI:10.32604/cmc.2025.062452 - 26 March 2025

    Abstract Image processing plays a vital role in various fields such as autonomous systems, healthcare, and cataloging, especially when integrated with deep learning (DL). It is crucial in medical diagnostics, including the early detection of diseases like chronic obstructive pulmonary disease (COPD), which claimed 3.2 million lives in 2015. COPD, a life-threatening condition often caused by prolonged exposure to lung irritants and smoking, progresses through stages. Early diagnosis through image processing can significantly improve survival rates. COPD encompasses chronic bronchitis (CB) and emphysema; CB particularly increases in smokers and generally affects individuals between 50 and 70… More >

  • Open Access

    ARTICLE

    An Image Analysis Algorithm for Measuring Flank Wear in Coated End-Mills

    Vitor F. C. Sousa1, Jorge Gil1, Tiago E. F. Silva1, Abílio M. P. de Jesus1,2, Francisco J. G. Silva1,3, João Manuel R. S. Tavares1,2,*

    CMC-Computers, Materials & Continua, Vol.83, No.1, pp. 177-199, 2025, DOI:10.32604/cmc.2025.062133 - 26 March 2025

    Abstract The machining process remains relevant for manufacturing high-quality and high-precision parts, which can be found in industries such as aerospace and aeronautical, with many produced by turning, drilling, and milling processes. Monitoring and analyzing tool wear during these processes is crucial to assess the tool’s life and optimize the tool’s performance under study; as such, standards detail procedures to measure and assess tool wear for various tools. Measuring wear in machining tools can be time-consuming, as the process is usually manual, requiring human interaction and judgment. In the present work, an automated offline flank wear… More >

  • Open Access

    ARTICLE

    Multi-Scale Feature Fusion Network for Accurate Detection of Cervical Abnormal Cells

    Chuanyun Xu1,#, Die Hu1,#, Yang Zhang1,*, Shuaiye Huang1, Yisha Sun1, Gang Li2

    CMC-Computers, Materials & Continua, Vol.83, No.1, pp. 559-574, 2025, DOI:10.32604/cmc.2025.061579 - 26 March 2025

    Abstract Detecting abnormal cervical cells is crucial for early identification and timely treatment of cervical cancer. However, this task is challenging due to the morphological similarities between abnormal and normal cells and the significant variations in cell size. Pathologists often refer to surrounding cells to identify abnormalities. To emulate this slide examination behavior, this study proposes a Multi-Scale Feature Fusion Network (MSFF-Net) for detecting cervical abnormal cells. MSFF-Net employs a Cross-Scale Pooling Model (CSPM) to effectively capture diverse features and contextual information, ranging from local details to the overall structure. Additionally, a Multi-Scale Fusion Attention (MSFA)… More >

  • Open Access

    ARTICLE

    Optimizing 2D Image Quality in CartoonGAN: A Novel Approach Using Enhanced Pixel Integration

    Stellar Choi1, HeeAe Ko2, KyungRok Bae3, HyunSook Lee2, HaeJong Joo4, Woong Choi5,*

    CMC-Computers, Materials & Continua, Vol.83, No.1, pp. 335-355, 2025, DOI:10.32604/cmc.2025.061243 - 26 March 2025

    Abstract Previous research utilizing Cartoon Generative Adversarial Network (CartoonGAN) has encountered limitations in managing intricate outlines and accurately representing lighting effects, particularly in complex scenes requiring detailed shading and contrast. This paper presents a novel Enhanced Pixel Integration (EPI) technique designed to improve the visual quality of images generated by CartoonGAN. Rather than modifying the core model, the EPI approach employs post-processing adjustments that enhance images without significant computational overhead. In this method, images produced by CartoonGAN are converted from Red-Green-Blue (RGB) to Hue-Saturation-Value (HSV) format, allowing for precise adjustments in hue, saturation, and brightness, thereby… More >

  • Open Access

    ARTICLE

    A Generative Image Steganography Based on Disentangled Attribute Feature Transformation and Invertible Mapping Rule

    Xiang Zhang1,2,*, Shenyan Han1,2, Wenbin Huang1,2, Daoyong Fu1,2

    CMC-Computers, Materials & Continua, Vol.83, No.1, pp. 1149-1171, 2025, DOI:10.32604/cmc.2025.060876 - 26 March 2025

    Abstract Generative image steganography is a technique that directly generates stego images from secret information. Unlike traditional methods, it theoretically resists steganalysis because there is no cover image. Currently, the existing generative image steganography methods generally have good steganography performance, but there is still potential room for enhancing both the quality of stego images and the accuracy of secret information extraction. Therefore, this paper proposes a generative image steganography algorithm based on attribute feature transformation and invertible mapping rule. Firstly, the reference image is disentangled by a content and an attribute encoder to obtain content features… More >

  • Open Access

    ARTICLE

    GACL-Net: Hybrid Deep Learning Framework for Accurate Motor Imagery Classification in Stroke Rehabilitation

    Chayut Bunterngchit1, Laith H. Baniata2, Mohammad H. Baniata3, Ashraf ALDabbas4, Mohannad A. Khair5, Thanaphon Chearanai6, Sangwoo Kang2,*

    CMC-Computers, Materials & Continua, Vol.83, No.1, pp. 517-536, 2025, DOI:10.32604/cmc.2025.060368 - 26 March 2025

    Abstract Stroke is a leading cause of death and disability worldwide, significantly impairing motor and cognitive functions. Effective rehabilitation is often hindered by the heterogeneity of stroke lesions, variability in recovery patterns, and the complexity of electroencephalography (EEG) signals, which are often contaminated by artifacts. Accurate classification of motor imagery (MI) tasks, involving the mental simulation of movements, is crucial for assessing rehabilitation strategies but is challenged by overlapping neural signatures and patient-specific variability. To address these challenges, this study introduces a graph-attentive convolutional long short-term memory (LSTM) network (GACL-Net), a novel hybrid deep learning model… More >

  • Open Access

    ARTICLE

    Image Super-Resolution Reconstruction Based on the DSSTU-Net Model

    Bonan Yu1,2, Taiping Mo1,3, Qi Ma1, Qiumei Li1, Peng Sun1,3,*

    CMC-Computers, Materials & Continua, Vol.83, No.1, pp. 1057-1078, 2025, DOI:10.32604/cmc.2025.059946 - 26 March 2025

    Abstract Super-resolution (SR) reconstruction addresses the challenge of enhancing image resolution, which is critical in domains such as medical imaging, remote sensing, and computational photography. High-quality image reconstruction is essential for enhancing visual details and improving the accuracy of subsequent tasks. Traditional methods, including interpolation techniques and basic CNNs, often fail to recover fine textures and detailed structures, particularly in complex or high-frequency regions. In this paper, we present Deep Supervised Swin Transformer U-Net (DSSTU-Net), a novel architecture designed to improve image SR by integrating Residual Swin Transformer Blocks (RSTB) and Deep Supervision (DS) mechanisms into… More >

  • Open Access

    ARTICLE

    An Uncertainty Quantization-Based Method for Anti-UAV Detection in Infrared Images

    Can Wu1,2, Wenyi Tang2, Yunbo Rao1,2,*, Yinjie Chen1, Hui Ding2, Shuzhen Zhu3, Yuanyuan Wang3

    CMC-Computers, Materials & Continua, Vol.83, No.1, pp. 1415-1434, 2025, DOI:10.32604/cmc.2025.059797 - 26 March 2025

    Abstract Infrared unmanned aerial vehicle (UAV) target detection presents significant challenges due to the interplay between small targets and complex backgrounds. Traditional methods, while effective in controlled environments, often fail in scenarios involving long-range targets, high noise levels, or intricate backgrounds, highlighting the need for more robust approaches. To address these challenges, we propose a novel three-stage UAV segmentation framework that leverages uncertainty quantification to enhance target saliency. This framework incorporates a Bayesian convolutional neural network capable of generating both segmentation maps and probabilistic uncertainty maps. By utilizing uncertainty predictions, our method refines segmentation outcomes, achieving… More >

Displaying 21-30 on page 3 of 1404. Per Page