Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (1,241)
  • Open Access


    Correction: Applying Customized Convolutional Neural Network to Kidney Image Volumes for Kidney Disease Detection

    Ali Altalbe1,2,*, Abdul Rehman Javed3

    Computer Systems Science and Engineering, Vol.48, No.4, pp. 1075-1081, 2024, DOI:10.32604/csse.2024.054179

    Abstract This article has no abstract. More >

  • Open Access


    Intelligent Image Text Detection via Pixel Standard Deviation Representation

    Sana Sahar Guia1, Abdelkader Laouid1, Mohammad Hammoudeh2,*, Mostafa Kara1,3

    Computer Systems Science and Engineering, Vol.48, No.4, pp. 915-935, 2024, DOI:10.32604/csse.2024.046414

    Abstract Artificial intelligence has been involved in several domains. Despite the advantages of using artificial intelligence techniques, some crucial limitations prevent them from being implemented in specific domains and locations. The accuracy, poor quality of gathered data, and processing time are considered major concerns in implementing machine learning techniques, certainly in low-end smart devices. This paper aims to introduce a novel pre-treatment technique dedicated to image text detection that uses the images’ pixel divergence and similarity to reduce the image size. Mitigating the image size while keeping its features improves the model training time with an… More >

  • Open Access


    Enhancing Multi-Modality Medical Imaging: A Novel Approach with Laplacian Filter + Discrete Fourier Transform Pre-Processing and Stationary Wavelet Transform Fusion

    Mian Muhammad Danyal1,2, Sarwar Shah Khan3,4,*, Rahim Shah Khan5, Saifullah Jan2, Naeem ur Rahman6

    Journal of Intelligent Medicine and Healthcare, Vol.2, pp. 35-53, 2024, DOI:10.32604/jimh.2024.051340

    Abstract Multi-modality medical images are essential in healthcare as they provide valuable insights for disease diagnosis and treatment. To harness the complementary data provided by various modalities, these images are amalgamated to create a single, more informative image. This fusion process enhances the overall quality and comprehensiveness of the medical imagery, aiding healthcare professionals in making accurate diagnoses and informed treatment decisions. In this study, we propose a new hybrid pre-processing approach, Laplacian Filter + Discrete Fourier Transform (LF+DFT), to enhance medical images before fusion. The LF+DFT approach highlights key details, captures small information, and sharpens… More >

  • Open Access


    GliomaCNN: An Effective Lightweight CNN Model in Assessment of Classifying Brain Tumor from Magnetic Resonance Images Using Explainable AI

    Md. Atiqur Rahman1, Mustavi Ibne Masum1, Khan Md Hasib2, M. F. Mridha3,*, Sultan Alfarhood4, Mejdl Safran4,*, Dunren Che5

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.3, pp. 2425-2448, 2024, DOI:10.32604/cmes.2024.050760

    Abstract Brain tumors pose a significant threat to human lives and have gained increasing attention as the tenth leading cause of global mortality. This study addresses the pressing issue of brain tumor classification using Magnetic resonance imaging (MRI). It focuses on distinguishing between Low-Grade Gliomas (LGG) and High-Grade Gliomas (HGG). LGGs are benign and typically manageable with surgical resection, while HGGs are malignant and more aggressive. The research introduces an innovative custom convolutional neural network (CNN) model, Glioma-CNN. GliomaCNN stands out as a lightweight CNN model compared to its predecessors. The research utilized the BraTS 2020 More >

  • Open Access


    A Comprehensive Systematic Review: Advancements in Skin Cancer Classification and Segmentation Using the ISIC Dataset

    Madiha Hameed1,3, Aneela Zameer1,*, Muhammad Asif Zahoor Raja2

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.3, pp. 2131-2164, 2024, DOI:10.32604/cmes.2024.050124

    Abstract The International Skin Imaging Collaboration (ISIC) datasets are pivotal resources for researchers in machine learning for medical image analysis, especially in skin cancer detection. These datasets contain tens of thousands of dermoscopic photographs, each accompanied by gold-standard lesion diagnosis metadata. Annual challenges associated with ISIC datasets have spurred significant advancements, with research papers reporting metrics surpassing those of human experts. Skin cancers are categorized into melanoma and non-melanoma types, with melanoma posing a greater threat due to its rapid potential for metastasis if left untreated. This paper aims to address challenges in skin cancer detection… More >

  • Open Access


    Advancements in Remote Sensing Image Dehazing: Introducing URA-Net with Multi-Scale Dense Feature Fusion Clusters and Gated Jump Connection

    Hongchi Liu1, Xing Deng1,*, Haijian Shao1,2

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.3, pp. 2397-2424, 2024, DOI:10.32604/cmes.2024.049737

    Abstract The degradation of optical remote sensing images due to atmospheric haze poses a significant obstacle, profoundly impeding their effective utilization across various domains. Dehazing methodologies have emerged as pivotal components of image preprocessing, fostering an improvement in the quality of remote sensing imagery. This enhancement renders remote sensing data more indispensable, thereby enhancing the accuracy of target identification. Conventional defogging techniques based on simplistic atmospheric degradation models have proven inadequate for mitigating non-uniform haze within remotely sensed images. In response to this challenge, a novel UNet Residual Attention Network (URA-Net) is proposed. This paradigmatic approach… More > Graphic Abstract

    Advancements in Remote Sensing Image Dehazing: Introducing URA-Net with Multi-Scale Dense Feature Fusion Clusters and Gated Jump Connection

  • Open Access


    Support Vector Machine (SVM) and Object Based Classification in Earth Linear Features Extraction: A Comparison

    Siti Aekbal Salleh1,2,*, Nafisah Khalid1, Natasha Danny6, Nurul Ain Mohd. Zaki2,3, Mustafa Ustuner4, Zulkiflee Abd Latif1,2, Vladimir Foronda5

    Revue Internationale de Géomatique, Vol.33, pp. 183-199, 2024, DOI:10.32604/rig.2024.050723

    Abstract Due to the spectral and spatial properties of pervious and impervious surfaces, image classification and information extraction in detailed, small-scale mapping of urban surface materials is quite difficult and complex. Emerging methods and innovations in image classification have centred on object-based classification techniques and various segmentation techniques, which are fundamental to this approach. Consequently, the purpose of this study is to determine which classification method is most suitable for extracting linear features in terms of techniques and performance by comparing two classification methods, pixel-based approach and object-based approach, using WorldView-2 satellite imagery to specifically highlight… More > Graphic Abstract

    Support Vector Machine (SVM) and Object Based Classification in Earth Linear Features Extraction: A Comparison

  • Open Access


    Research on Multi-Scale Feature Fusion Network Algorithm Based on Brain Tumor Medical Image Classification

    Yuting Zhou1, Xuemei Yang1, Junping Yin2,3,4,*, Shiqi Liu1

    CMC-Computers, Materials & Continua, Vol.79, No.3, pp. 5313-5333, 2024, DOI:10.32604/cmc.2024.052060

    Abstract Gliomas have the highest mortality rate of all brain tumors. Correctly classifying the glioma risk period can help doctors make reasonable treatment plans and improve patients’ survival rates. This paper proposes a hierarchical multi-scale attention feature fusion medical image classification network (HMAC-Net), which effectively combines global features and local features. The network framework consists of three parallel layers: The global feature extraction layer, the local feature extraction layer, and the multi-scale feature fusion layer. A linear sparse attention mechanism is designed in the global feature extraction layer to reduce information redundancy. In the local feature… More >

  • Open Access


    Joint Rain Streaks & Haze Removal Network for Object Detection

    Ragini Thatikonda1, Prakash Kodali1,*, Ramalingaswamy Cheruku2, Eswaramoorthy K.V3

    CMC-Computers, Materials & Continua, Vol.79, No.3, pp. 4683-4702, 2024, DOI:10.32604/cmc.2024.051844

    Abstract In the realm of low-level vision tasks, such as image deraining and dehazing, restoring images distorted by adverse weather conditions remains a significant challenge. The emergence of abundant computational resources has driven the dominance of deep Convolutional Neural Networks (CNNs), supplanting traditional methods reliant on prior knowledge. However, the evolution of CNN architectures has tended towards increasing complexity, utilizing intricate structures to enhance performance, often at the expense of computational efficiency. In response, we propose the Selective Kernel Dense Residual M-shaped Network (SKDRMNet), a flexible solution adept at balancing computational efficiency with network accuracy. A… More >

  • Open Access


    BDPartNet: Feature Decoupling and Reconstruction Fusion Network for Infrared and Visible Image

    Xuejie Wang1, Jianxun Zhang1,*, Ye Tao2, Xiaoli Yuan1, Yifan Guo1

    CMC-Computers, Materials & Continua, Vol.79, No.3, pp. 4621-4639, 2024, DOI:10.32604/cmc.2024.051556

    Abstract While single-modal visible light images or infrared images provide limited information, infrared light captures significant thermal radiation data, whereas visible light excels in presenting detailed texture information. Combining images obtained from both modalities allows for leveraging their respective strengths and mitigating individual limitations, resulting in high-quality images with enhanced contrast and rich texture details. Such capabilities hold promising applications in advanced visual tasks including target detection, instance segmentation, military surveillance, pedestrian detection, among others. This paper introduces a novel approach, a dual-branch decomposition fusion network based on AutoEncoder (AE), which decomposes multi-modal features into intensity… More >

Displaying 11-20 on page 2 of 1241. Per Page