Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (9)
  • Open Access

    ARTICLE

    Effect of Salinity on Imbibition-Based Oil Production

    Xiong Liu1, Yueqi Cui1,*, Yirui Ren1, Lingxuan Peng2, Yuchan Cheng1, Zhiyuan Du1, Yu Chen1, Lishan Cao3

    FDMP-Fluid Dynamics & Materials Processing, Vol.21, No.11, pp. 2815-2828, 2025, DOI:10.32604/fdmp.2025.073775 - 01 December 2025

    Abstract This study explores the impact of salinity on fluid replacement during imbibition-driven oil recovery through a series of core self-imbibition experiments. By integrating key parameters such as interfacial tension, contact angle, and oil displacement efficiency, we systematically examine how variations in salinity level, ion type, and ion concentration affect the imbibition process. The results demonstrate that the salinity of the injected fluid exerts a strong influence on the rate and extent of oil recovery. Compared with high-salinity conditions, low-salinity injection, particularly below 5000 mg·L−1, induces pronounced fluctuations in the replacement rate, achieving the highest recovery at More >

  • Open Access

    ARTICLE

    Analytical Modeling and Comparative Analysis of Capillary Imbibition in Shale Pores of Various Geometries

    Jin Xue, Boyun Guo*

    CMES-Computer Modeling in Engineering & Sciences, Vol.144, No.3, pp. 3307-3328, 2025, DOI:10.32604/cmes.2025.069909 - 30 September 2025

    Abstract Fluid imbibition from hydraulic fractures into shale formations is mainly affected by a combination of capillary forces and viscous resistance, both of which are closely related to the pore geometry. This study established five self-imbibition models with idealized pore structures and conducted a comparative analysis of these models. These models include circular, square, and equilateral triangular capillaries; a triangular star-shaped cross-section formed by three tangent spherical particles; and a traditional porous medium representation method. All these models are derived based on Newton’s second law, where capillary pressure is described by the Young-Laplace equation and viscous… More >

  • Open Access

    ARTICLE

    Imbibition Front and Phase Distribution in Shale Based on Lattice Boltzmann Method

    Li Lu1,2,3, Yadong Huang2,4, Kuo Liu2, Xuhui Zhang3,5, Xiaobing Lu3,5,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.142, No.2, pp. 2173-2190, 2025, DOI:10.32604/cmes.2025.059045 - 27 January 2025

    Abstract To study the development of imbibition such as the imbibition front and phase distribution in shale, the Lattice Boltzmann Method (LBM) is used to study the imbibition processes in the pore-throat network of shale. Through dimensional analysis, four dimensionless parameters affecting the imbibition process were determined. A color gradient model of LBM was used in computation based on a real core pore size distribution. The numerical results show that the four factors have great effects on imbibition. The impact of each factor is not monotonous. The imbibition process is the comprehensive effect of all aspects. More >

  • Open Access

    PROCEEDINGS

    Spontaneous Imbibition Considering Fractal Theory and Dynamic Contact Angle in Tight Sandstone

    Jingjing Ping1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.25, No.4, pp. 1-1, 2023, DOI:10.32604/icces.2023.08787

    Abstract In the process of tight oil reservoir development, there are a lot of spontaneous imbibition phenomena which are beneficial to achieving the purpose of enhancing oil recovery. It is of great significance to study the law of spontaneous imbibition of oil and water at the pore scale of tight sandstone. In this paper, we study the law of spontaneous imbibition at the pore scale of tight sandstone by combining theoretical research and numerical simulation. Based on the fractal theory and the capillary bundle model, we establish a mathematical model of spontaneous imbibition in porous media More >

  • Open Access

    ARTICLE

    Numerical Stability and Accuracy of Contact Angle Schemes in Pseudopotential Lattice Boltzmann Model for Simulating Static Wetting and Dynamic Wetting

    Dongmin Wang1,2,*, Gaoshuai Lin1

    CMES-Computer Modeling in Engineering & Sciences, Vol.137, No.1, pp. 299-318, 2023, DOI:10.32604/cmes.2023.027280 - 23 April 2023

    Abstract There are five most widely used contact angle schemes in the pseudopotential lattice Boltzmann (LB) model for simulating the wetting phenomenon: The pseudopotential-based scheme (PB scheme), the improved virtual-density scheme (IVD scheme), the modified pseudopotential-based scheme with a ghost fluid layer constructed by using the fluid layer density above the wall (MPB-C scheme), the modified pseudopotential-based scheme with a ghost fluid layer constructed by using the weighted average density of surrounding fluid nodes (MPB-W scheme) and the geometric formulation scheme (GF scheme). But the numerical stability and accuracy of the schemes for wetting simulation remain… More >

  • Open Access

    ARTICLE

    Morpho-Anatomy of the Echium plantagineum L. (Boraginaceae) Diaspores in Relation with Water Uptake and Germination

    María Laura Molinelli*, Rocío Tarifa, Patricia Perissé

    Phyton-International Journal of Experimental Botany, Vol.89, No.2, pp. 345-360, 2020, DOI:10.32604/phyton.2020.08796 - 22 April 2020

    Abstract Echium plantagineum (Boraginaceae) is native of the Mediterranean regions, has been introduced and become widespread within the American continent (North to South), South Africa, New Zealand and Australia. This plant has seed dormancy, aggressively spreads to infest vast areas of predominantly agricultural land and is considered a toxic weed to livestock. The objectives of this research were: (i) to study the morpho-anatomy of the diaspores of E. plantagineum; (ii) to identify the pathway of water uptake; and (iii) to characterize the germination and the seedling. The morpho-anatomical studies were carried out analyzing semi-permanent slides of transverse and… More >

  • Open Access

    ARTICLE

    Seed morphology, presence of areoles and water entry at imbibition of Vicia dasycarpa Ten. cv. Tolse F.C.A

    Perissé P1 y GM Tourn2

    Phyton-International Journal of Experimental Botany, Vol.84, No.1, pp. 184-189, 2015, DOI:10.32604/phyton.2015.84.184

    Abstract The morphological characteristics of the seeds of Vicia dasycarpa Ten. cv. Tolse FCA were studied in relation to the area of imbibition water entry and were considered the presence of areoles. Seeds were analyzed using a stereo, optical and scanning electron microscope (SEM). The determination of the initial water entry area was carried out by immersing the seeds in a solution of tetrazolium (1%). This study showed that this species has seeds with a halo framing the hilum, an inconspicuous dry aril and a deltoid micropyle. The seedcoat pattern is papillose. The tracheid bar is surrounded More >

  • Open Access

    ARTICLE

    Effect of man-made electromagnetic fields on common Brassicaceae Lepidium sativum (cress d’Alinois) seed germination: a preliminary replication study

    Cammaerts MC1, O Johansson2

    Phyton-International Journal of Experimental Botany, Vol.84, No.1, pp. 132-137, 2015, DOI:10.32604/phyton.2015.84.132

    Abstract Under high levels of radiation (70-100 µW/m2 =175 mV/m), seeds of Brassicaceae Lepidium sativum (cress d’Alinois) never germinated. In fact, the first step of seeds’ germination ‒ e.g. imbibitions of germinal cells ‒ could not occur under radiation, while inside the humid compost such imbibitions occurred and roots slightly developed. When removed from the electromagnetic field, seeds germinated normally. The radiation was, thus, most likely the cause of the non-occurrence of the seeds’ imbibitions and germination. More >

  • Open Access

    ARTICLE

    Fluid Transport in Compacted Porous Talc Blocks

    Viveca Wallqvist1, Per M. Claesson2, Agne Swerin1, Patrick A. C. Gane3,4,3, Joachim Schoelkopf3

    FDMP-Fluid Dynamics & Materials Processing, Vol.4, No.2, pp. 85-98, 2008, DOI:10.3970/fdmp.2008.004.085

    Abstract It has been shown that talc powder can be compacted into tablets with a preferred orientation of the platelets. The tablets can be obtained with different controlled porosity depending on pressing methods and applied pressure. The tablets can be obtained with or without additives, which may, in turn, be adsorbed. The orientation of the high aspect ratio platy talc, the surface chemistry imparted by the additives and the transported fluid influence the imbibition and permeation rates. Non-polar hexadecane displays a higher imbibition and permeability than water for all particulate orientations during short timescale absorption, likely… More >

Displaying 1-10 on page 1 of 9. Per Page