Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (104)
  • Open Access

    ARTICLE

    A prognosis model for predicting immunotherapy response of esophageal cancer based on oxidative stress-related signatures

    JING GUO1, CHANGYONG TONG1, JIANGUANG SHI1, XINJIAN LI1, XUEQIN CHEN2,*

    Oncology Research, Vol.32, No.1, pp. 199-212, 2024, DOI:10.32604/or.2023.030969

    Abstract Oxidative stress (OS) is intimately associated with tumorigenesis and has been considered a potential therapeutic strategy. However, the OS-associated therapeutic target for esophageal squamous cell carcinoma (ESCC) remains unconfirmed. In our study, gene expression data of ESCC and clinical information from public databases were downloaded. Through LASSO-Cox regression analysis, a risk score (RS) signature map of prognosis was constructed and performed external verification with the GSE53625 cohort. The ESTIMATE, xCell, CIBERSORT, TIMER, and ImmuCellAI algorithms were employed to analyze infiltrating immune cells and generate an immune microenvironment (IM). Afterward, functional enrichment analysis clarified the underlying mechanism of the model. Nomogram… More >

  • Open Access

    REVIEW

    Opportunities and challenges of CD47-targeted therapy in cancer immunotherapy

    QIUQIANG CHEN1,*, XUEJUN GUO2, WENXUE MA3,*

    Oncology Research, Vol.32, No.1, pp. 49-60, 2024, DOI:10.32604/or.2023.042383

    Abstract Cancer immunotherapy has emerged as a promising strategy for the treatment of cancer, with the tumor microenvironment (TME) playing a pivotal role in modulating the immune response. CD47, a cell surface protein, has been identified as a crucial regulator of the TME and a potential therapeutic target for cancer therapy. However, the precise functions and implications of CD47 in the TME during immunotherapy for cancer patients remain incompletely understood. This comprehensive review aims to provide an overview of CD47’s multifaced role in TME regulation and immune evasion, elucidating its impact on various types of immunotherapy outcomes, including checkpoint inhibitors and… More > Graphic Abstract

    Opportunities and challenges of CD47-targeted therapy in cancer immunotherapy

  • Open Access

    Ring finger protein 157 is a prognostic biomarker and is associated with immune infiltrates in human breast cancer

    XIN ZHU1,2,#, BIN XIAO3,#,*, WENWU ZHANG3,4, XIAOYU SONG3, WEI GONG5, LINHAI LI3,*, XINPING CHEN1,2,*

    BIOCELL, Vol.47, No.10, pp. 2265-2281, 2023, DOI:10.32604/biocell.2023.029195

    Abstract Background: The protein encoded by ring finger protein 157 (RNF157) is known to function as an E3 ubiquitin ligase. However, whether the level of RNF157 expression in breast cancer correlates with prognosis and immune cell infiltration among breast cancer patients remains to be further explored. Methods: In this study, publicly available datasets were used for evaluating RNF157 expression in different tumors compared with normal samples. Several independent datasets were screened for investigating the relationship between RNF157 and breast cancer survival, different mutation profiles, and tumor immune cell infiltration. We conducted a pathway enrichment analysis to identify signaling pathways associated with… More >

  • Open Access

    ARTICLE

    Application of the Deep Convolutional Neural Network for the Classification of Auto Immune Diseases

    Fayaz Muhammad1, Jahangir Khan1, Asad Ullah1, Fasee Ullah1, Razaullah Khan2, Inayat Khan2, Mohammed ElAffendi3, Gauhar Ali3,*

    CMC-Computers, Materials & Continua, Vol.77, No.1, pp. 647-664, 2023, DOI:10.32604/cmc.2023.038748

    Abstract IIF (Indirect Immune Florescence) has gained much attention recently due to its importance in medical sciences. The primary purpose of this work is to highlight a step-by-step methodology for detecting autoimmune diseases. The use of IIF for detecting autoimmune diseases is widespread in different medical areas. Nearly 80 different types of autoimmune diseases have existed in various body parts. The IIF has been used for image classification in both ways, manually and by using the Computer-Aided Detection (CAD) system. The data scientists conducted various research works using an automatic CAD system with low accuracy. The diseases in the human body… More >

  • Open Access

    ARTICLE

    Characterization of prognosis and immune infiltration by a novel glutamine metabolism-related model in cutaneous melanoma

    MENGQIN ZHU1,2,3,4,#, TIANYI XU5,#, HAN ZHANG3,4, XIN FAN3,4, YULAN WANG6, JIAJIA ZHANG3,4, FEI YU1,2,3,4,*

    BIOCELL, Vol.47, No.9, pp. 1931-1945, 2023, DOI:10.32604/biocell.2023.028968

    Abstract Glutamine metabolism (GM) plays an important role in tumor growth and proliferation. Skin cutaneous melanoma (SKCM) is a glutamine-dependent cancer. However, the molecular characteristics and action mechanism of GM on SKCM remain unclear. Therefore, we aimed to explore the effects of GM-related genes on survival, clinicopathological characteristics, and the tumor microenvironment in SKCM. In this study, 682 SKCM samples were obtained from the Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. Consensus clustering was used to classify SKCM samples into distinct subtypes based on 41 GM-related genes. Differences in survival, immune infiltration, clinical characteristics, and Kyoto Encyclopedia of… More > Graphic Abstract

    Characterization of prognosis and immune infiltration by a novel glutamine metabolism-related model in cutaneous melanoma

  • Open Access

    ARTICLE

    Identification of EML4 as a key hub gene for endometriosis and its molecular mechanism and potential drug prediction based on the GEO database

    XIANBAO FANG1,#, MINGYAN TANG1,#, ZIYANG YU1,#, JIAQI DING1, CHONG CUI2, HONG ZHANG1,*

    BIOCELL, Vol.47, No.9, pp. 2059-2068, 2023, DOI:10.32604/biocell.2023.030565

    Abstract Objective: Key genes were screened to analyze molecular mechanisms and their drug targets of endometriosis by applying a bioinformatics approach. Methods: Gene expression profiles of endometriosis and healthy controls were obtained from the Gene Expression Omnibus database. Significant differentially expressed genes were screened using the limma package. Correlation pathways were screened by Spearman correlation analysis on the echinoderm microtubule-associated protein-like 4 (EML4) and enrichment in endometriosis pathways and estimated by the GSVA package. Immune characteristics were assessed by the “ESTIMATE” R package. Potential regulatory pathways were determined by enrichment analysis. The SWISS-MODE website was used in homology modeling with EML4… More > Graphic Abstract

    Identification of EML4 as a key hub gene for endometriosis and its molecular mechanism and potential drug prediction based on the GEO database

  • Open Access

    ARTICLE

    Polo-like kinase 1 suppresses lung adenocarcinoma immunity through necroptosis

    PENGCHENG ZHANG1,#,*, XINGLONG ZHANG2,#, YONGFU ZHU3, YIYI CUI1, JING XU4, WEIPING ZHANG1,*

    Oncology Research, Vol.31, No.6, pp. 937-953, 2023, DOI:10.32604/or.2023.030933

    Abstract Polo-like kinase 1 (PLK1) plays a crucial role in cell mitosis and has been associated with necroptosis. However, the role of PLK1 and necroptosis in lung adenocarcinoma (LA) remains unclear. In this study, we analyzed The Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression databases to evaluate the prognostic value and mechanistic role of PLK1 in LA. PLK1 was found to be highly expressed in LA and was positively associated with advanced disease staging and poor survival outcomes. Functional enrichment analysis showed that PLK1 was involved in cell mitosis, neurotransmitter transmission, and drug metabolism. Further analysis using single-sample gene set enrichment… More > Graphic Abstract

    Polo-like kinase 1 suppresses lung adenocarcinoma immunity through necroptosis

  • Open Access

    ARTICLE

    The DMRTA1-SOX2 positive feedback loop promotes progression and chemotherapy resistance of esophageal squamous cell carcinoma

    RUI ZHANG1,2,#, PENG ZHOU1,3,#, XIA OU4, PEIZHU ZHAO2, XIJING GUO2, MIAN XI5,*, CHEN QING1,*

    Oncology Research, Vol.31, No.6, pp. 887-897, 2023, DOI:10.32604/or.2023.030184

    Abstract Esophageal squamous cell carcinoma (ESCC) is among the most prevalent causes of cancer-related death in patients worldwide. Resistance to immunotherapy and chemotherapy results in worse survival outcomes in ESCC. It is urgent to explore the underlying molecular mechanism of immune evasion and chemoresistance in ESCC. Here, we conducted RNA-sequencing analysis in ten ESCC tissues from cisplatin-based neoadjuvant chemotherapy patients. We found that DMRTA1 was extremely upregulated in the non-pathologic complete response (non-pCR) group. The proliferation rate of esophageal squamous carcinoma cells was markedly decreased after knockdown of DMRTA1 expression, which could increase cisplatin sensitivity in ESCC. Additionally, suppression of DMRTA1… More >

  • Open Access

    REVIEW

    The role of mesenchymal stem cell-derived exosomes in tumor progression

    CARL RANDALL HARREL1, VALENTIN DJONOV2, ANA VOLAREVIC3, DRAGICA PAVLOVIC4, VLADISLAV VOLAREVIC4,5,*

    BIOCELL, Vol.47, No.8, pp. 1757-1769, 2023, DOI:10.32604/biocell.2023.028567

    Abstract Exosomes derived from mesenchymal stem cells (MSC-Exos) are nano-sized extracellular vesicles enriched with bioactive molecules, such as microRNAs, enzymes, cytokines, chemokines, immunomodulatory, trophic, and growth factors. These molecules regulate the survival, phenotype, and function of malignant and tumor-infiltrated immune cells. Due to their nano-size and bilayer lipid envelope, MSC-Exos can easily bypass biological barriers and may serve as drug carriers to deliver chemotherapeutics directly into the tumor cells. Here, we summarize current knowledge regarding molecular mechanisms responsible for MSC-Exos-dependent modulation of tumor progression and discuss insights regarding the therapeutic potential of MSC-Exos in the treatment of malignant diseases. More > Graphic Abstract

    The role of mesenchymal stem cell-derived exosomes in tumor progression

  • Open Access

    ARTICLE

    Circulating tumor cells: Biological features and survival mechanisms

    XIAOFENG LI1, JINYANG ZHENG2, JINFENG ZHU3, XIN HUANG4, HUANHUAN ZHU5, BINGDI CHEN6,*

    BIOCELL, Vol.47, No.8, pp. 1771-1781, 2023, DOI:10.32604/biocell.2023.028343

    Abstract Circulating tumor cells (CTCs) are neoplastic cells that are detached from primary tumors and enter circulation. Enumeration and characterization of CTCs are of significance in cancer diagnosis, prognosis, and treatment monitoring. CTC survival in the bloodstream is a limiting step for the development of metastases in distant organs. Recent technological advances, especially in single-cell molecular analyses have uncovered heterogeneous CTC survival mechanisms. Undergoing epithelial-to-mesenchymal transition (EMT), increasing stem cell-like properties, and forming cell clusters enable CTCs to adapt to the harsh microenvironment of the circulation. Expressing and releasing several immunosuppressive molecules help CTCs escape from anti-cancer immune mechanisms. This review… More >

Displaying 21-30 on page 3 of 104. Per Page