Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (188)
  • Open Access

    REVIEW

    Branched-Chain Amino Acid Metabolic Reprogramming and Cancer: Molecular Mechanisms, Immune Regulation, and Precision Targeting

    Dongchi Cai1,2,#, Jialin Ji3,#, Chunhui Yang1,*, Hong Cai1,*

    Oncology Research, Vol.34, No.1, 2026, DOI:10.32604/or.2025.071152 - 30 December 2025

    Abstract Metabolic reprogramming involving branched-chain amino acids (BCAAs)—leucine, isoleucine, and valine—is increasingly recognized as pivotal in cancer progression, metastasis, and immune modulation. This review comprehensively explores how cancer cells rewire BCAA metabolism to enhance proliferation, survival, and therapy resistance. Tumors manipulate BCAA uptake and catabolism via high expression of transporters like L-type amino acid transporter 1 (LAT1) and enzymes including branched chain amino acid transaminase 1(BCAT1), branched chain amino acid transaminase 2 (BCAT2), branched-chain alpha-keto acid dehydrogenase (BCKDH), and branched chain alpha-keto acid dehydrogenase kinase (BCKDK). These alterations sustain energy production, biosynthesis, redox homeostasis, and oncogenic… More >

  • Open Access

    ARTICLE

    AGPAT3 Regulates Immune Microenvironment in Osteosarcoma via Lysophosphatidic Acid Metabolism

    Shenghui Su, Yu Zeng, Jiaxin Chen, Xieping Dong*

    Oncology Research, Vol.34, No.1, 2026, DOI:10.32604/or.2025.070558 - 30 December 2025

    Abstract Background: Recent studies have shown glycerolipid metabolism played an essential role in multiple tumors, however, its function in osteosarcoma is unclear. This study aimed to explore the role of glycerolipid metabolism in osteosarcoma. Methods: We conducted bioinformatics analysis using data from the Therapeutically Applicable Research to Generate Effective Treatments (TARGET) database and single-cell RNA sequencing. Least Absolute Shrinkage and Selection Operator (LASSO) regression was used to identify the Glycerolipid metabolism-related genes associated with the clinical outcome of osteosarcoma. Tumor-associated macrophages (TAMs) and their interactions with immune cells were examined through single-cell analysis and co-culture experiments.… More >

  • Open Access

    REVIEW

    Effectiveness and Safety of Lenvatinib and Everolimus after Immune Checkpoint Inhibitors in Metastatic Renal Cell Cancer: A Systematic Review

    Giacomo Iovane1,*, Luca Traman2, Michele Maffezzoli1,3, Giuseppe Fornarini2, Domenico Corradi4, Debora Guareschi4, Matteo Santoni5,#, Sebastiano Buti1,#

    Oncology Research, Vol.34, No.1, 2026, DOI:10.32604/or.2025.070523 - 30 December 2025

    Abstract Background: While the treatment of metastatic renal cell carcinoma (mRCC) is evolving due to immune checkpoint inhibitors (ICIs), optimal strategies for later lines of therapy have yet to be defined. The combination of lenvatinib and everolimus represents a viable option, and the present review aimed to summarize its activity, effectiveness, and safety. Methods: A systematic review of the literature was conducted using PubMed, targeting studies published between 2018 and 2025. Eligible studies included English-language prospective and retrospective trials reporting survival outcomes in mRCC patients treated with lenvatinib and everolimus after at least one ICI-containing regimen. Results:More > Graphic Abstract

    Effectiveness and Safety of Lenvatinib and Everolimus after Immune Checkpoint Inhibitors in Metastatic Renal Cell Cancer: A Systematic Review

  • Open Access

    ARTICLE

    ETV4-Mediated PD-L1 Upregulation Promotes Immune Evasion and Predicts Poor Immunotherapy Response in Melanoma

    Tao Zhu1, Taofeng Wei1, Mingdong Yang1, Junjun Xu1, Huifang Jiang1, Wei He1, Juyan Zheng2,*, Haibin Dai1,*

    Oncology Research, Vol.34, No.1, 2026, DOI:10.32604/or.2025.070180 - 30 December 2025

    Abstract Background: Aberrant expression of transcription factors (TFs) is a key mechanism mediating tumor immune escape and therapeutic resistance. The involvement of E26 transformation-specific (ETS) family of TFs in immune regulation is not fully understood. The study aimed to elucidate the function of E-twenty-six variant 4 (ETV4) in tumor immune evasion and its potential as a predictive biomarker for immunotherapy in melanoma. Methods: The expression patterns of ETS family TFs were analyzed in melanoma and hepatocellular carcinoma (HCC). Single-cell RNA sequencing (scRNA-seq) was used to dissect the cellular expression and function of ETV4 in the tumor… More >

  • Open Access

    ARTICLE

    RFX1 Regulates Immune Microenvironment and Predicts Immunotherapy Response in Colon Cancer: A Multi-Omics and Clinical Analysis

    Zhujiang Dai1,2,#, Xiaoyong Ge1,2,#, Wenbo Tang1,2, Chen-Ying Liu1,2, Yun Liu1,2,*, Zhongchuan Wang1,2,*

    Oncology Research, Vol.33, No.12, pp. 4113-4143, 2025, DOI:10.32604/or.2025.068473 - 27 November 2025

    Abstract Objective: The plastic role of regulatory factor X1 (RFX1) in colon cancer progression and its impact on the tumor microenvironment remain poorly understood. The study aimed to clarify the molecular and clinical role of RFX1 in colon cancer. Methods: We classified colon cancers into subgroups with high and low RFX1 expression and characterized their immune profiles, mutational profiles, cancer immunotherapy and drug sensitivity. By combining RFX1 expression with persistent tumor mutational burden, we proposed a novel nomogram clinical prediction model and validated its predictive performance, and the correlation between high expression and poor prognosis. Results: Compared… More > Graphic Abstract

    RFX1 Regulates Immune Microenvironment and Predicts Immunotherapy Response in Colon Cancer: A Multi-Omics and Clinical Analysis

  • Open Access

    REVIEW

    Immune Checkpoint Inhibitors Combined with Oncolytic Virotherapy: Synergy, Heterogeneity, and Safety in Cancer Treatment

    Yi Feng1,#, Haoxin Yang2, Guicai Liang1, Jun Chen3, Tao Li1, Yingjuan Wang4, Jilin Chang1, Yan Li3, Meng Yang1, Xilong Zhou1, Zhiqiang Wang5,*, Chunlei Ge1,*

    Oncology Research, Vol.33, No.12, pp. 3801-3836, 2025, DOI:10.32604/or.2025.067824 - 27 November 2025

    Abstract Immune checkpoint inhibitor (ICI) has limited efficacy in the treatment of immune “cold” tumors. Due to insufficient T cell infiltration and heterogeneous programmed death ligand 1 (PD-L1) expression, the ORR is only 5%–8% compared with 30%–40% of “hot” tumors. This article reviews the synergistic mechanism, clinical efficacy and optimization strategy of oncolytic virus (OVs) combined with ICIs in the treatment of refractory malignant tumors. Systematic analysis of mechanistic interactions across tumor types and clinical trial data demonstrates that OVs transform the immunosuppressive microenvironment by inducing immunogenic cell death and activating innate immunity. Concurrently, ICIs enhance… More >

  • Open Access

    REVIEW

    Unraveling Immunotherapy Resistance in Solid Tumors: Decoding Mechanisms and Charting Future Therapeutic Landscapes

    Huan Wang1,#, Jindong Xie1,#, Na Li1, Qianwen Liu1, Wenqi Song1, Wenkuan Chen1, Cheng Peng2,*, Hailin Tang1,*

    Oncology Research, Vol.33, No.12, pp. 3789-3800, 2025, DOI:10.32604/or.2025.067592 - 27 November 2025

    Abstract Solid tumors comprise the majority of the global cancer burden, with their incidence and associated mortality posing considerable challenges to public health systems. With population growth and aging, the burden of these tumors is anticipated to increase further in the coming decades. The progression of solid tumors depends on dynamic interactions between malignantly transformed cells and the tumor microenvironment (TME). Immune checkpoint inhibitor therapy improves T cell-mediated antitumor activity by suppressing regulatory pathways, such as programmed cell death protein 1/programmed death-ligand 1. Nonetheless, its widespread application is constrained by drug resistance. In this comprehensive review, More >

  • Open Access

    ARTICLE

    Associations of systemic immune-inflammation index, product of platelet, and neutrophil count, with the pathological grade of bladder cancer

    Lihao Zhang1,2, Lin Cao1,2, Lige Huang1,2, Jie Wang1,2, Jiabing Li2,3,*

    Canadian Journal of Urology, Vol.32, No.5, pp. 457-468, 2025, DOI:10.32604/cju.2025.067364 - 30 October 2025

    Abstract Background: Studies have indicated an association between inflammatory factors (IFs) in the blood and the development of bladder cancer (BC). This study aimed to explore the correlation and clinical significance of IFs with the pathological grading of BC. Methods: A retrospective analysis was conducted on the preoperative blood routine results, postoperative pathological findings, and baseline information of 163 patients. Patients were divided into high-grade and low-grade groups based on pathological grading. Group comparisons and logistic regression analyses were performed using R software version 4.1.3 to explore the relationships between IFs and BC pathological grading. Results: The… More >

  • Open Access

    COMMENTARY

    CD47-Targeted Therapy in Cancer Immunotherapy: At a Crossroads of Promise and Challenge

    Xuejun Guo1,2, Yilin Fu3, Natalia Baran4,5, Wenxue Ma6,*

    Oncology Research, Vol.33, No.11, pp. 3375-3385, 2025, DOI:10.32604/or.2025.071708 - 22 October 2025

    Abstract Cluster of differentiation 47 (CD47), an immune checkpoint commonly referred to as the “don’t eat me” signal, plays a pivotal role in tumor immune evasion by inhibiting phagocytosis through interaction with signal regulatory protein alpha (SIRPα) on macrophages and dendritic cells (DCs). Although early enthusiasm drove broad clinical development, recent discontinuations of major CD47-targeted programs have prompted re-evaluation of its therapeutic potential. The purpose of this commentary is to contextualize the setbacks observed with first-generation CD47 inhibitors and to highlight strategies aimed at overcoming their limitations. Clinical challenges, including anemia, thrombocytopenia, suboptimal pharmacokinetics, and limited… More >

  • Open Access

    ARTICLE

    MINDY1 Induces PD-L1 Deubiquitination to Promote Immune Escape in Hepatocellular Carcinoma by the Wnt/β-Catenin Pathway

    Xingchao Song1,#, Qiuyu Song2,#, Xiao Ma1, Anzhi Xu1, Chunyan Tian1,*

    Oncology Research, Vol.33, No.11, pp. 3583-3603, 2025, DOI:10.32604/or.2025.067638 - 22 October 2025

    Abstract Background: Motif interacting with ubiquitin-containing novel DUB family-1 (MINDY1) could enhance the stability of programmed death-ligand 1 (PD-L1). The study aimed to investigate whether MINDY1 regulates the immune escape of hepatocellular carcinoma (HCC) mediated by PD-L1. Methods: MINDY1 and PD-L1 levels were detected through Western blot. The link between MINDY1 and PD-L1 was validated using the co-immunoprecipitation assay. The malignant biology of HCC cells was assessed through Cell Counting Kit-8, Carboxyfluorescein Succinimidyl Ester staining, transwell, and wound healing assay. CD8+ T cells were isolated and then co-cultured with HCC cells. Enzyme-linked immunosorbent Assay kits detected CD8+More > Graphic Abstract

    MINDY1 Induces PD-L1 Deubiquitination to Promote Immune Escape in Hepatocellular Carcinoma by the Wnt/β-Catenin Pathway

Displaying 1-10 on page 1 of 188. Per Page