Tamara Zhukabayeva1,2, Zulfiqar Ahmad1,3,*, Nurbolat Tasbolatuly4, Makpal Zhartybayeva1, Yerik Mardenov1,4, Nurdaulet Karabayev1,*, Dilaram Baumuratova1,4
CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.2, pp. 2573-2599, 2025, DOI:10.32604/cmes.2025.070426
- 26 November 2025
Abstract The Industrial Internet of Things (IIoT), combined with the Cyber-Physical Systems (CPS), is transforming industrial automation but also poses great cybersecurity threats because of the complexity and connectivity of the systems. There is a lack of explainability, challenges with imbalanced attack classes, and limited consideration of practical edge–cloud deployment strategies in prior works. In the proposed study, we suggest an Impact-Aware Taxonomy-Driven Machine Learning Framework with Edge Deployment and SHapley Additive exPlanations (SHAP)-based Explainable AI (XAI) to attack detection and classification in IIoT-CPS settings. It includes not only unsupervised clustering (K-Means and DBSCAN) to extract… More >