Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (2)
  • Open Access

    ARTICLE

    Effect of Different Shapes of Conformal Cooling Channel on the Parameters of Injection Molding

    Mahesh S. Shinde1,*, Kishor M. Ashtankar1

    CMC-Computers, Materials & Continua, Vol.54, No.3, pp. 287-306, 2018, DOI:10.3970/cmc.2018.054.287

    Abstract Cooling system improvement is important in injection molding to get better quality and productivity. The aim of this paper was to compare the different shapes of the conformal cooling channels (CCC) with constant surface area and CCC with constant volume in injection molding using Mold-flow Insight 2016 software. Also the CCC results were compared with conventional cooling channels. Four different shapes of the CCC such as circular, elliptical, rectangular and semi-circular were proposed. The locations of the cooling channels were also kept constant. The results in terms of cooling time, cycle time reduction and improvement in quality of the product… More >

  • Open Access

    ARTICLE

    Cycle Time Reduction in Injection Molding by Using Milled Groove Conformal Cooling

    Mahesh S. Shinde1,*, Kishor M. Ashtankar2

    CMC-Computers, Materials & Continua, Vol.53, No.3, pp. 207-217, 2017, DOI:10.32604/cmc.2017.053.223

    Abstract This paper presents simulation study on Milled Grooved conformal cooling channels (MGCCC) in injection molding. MGCCC has a more effective cooling surface area which helps to provide efficient cooling as compared to conventional cooling. A case study of Encloser part is investigated for cycle time reduction and quality improvement. The performance designs of straight drilled are compared with MGCCC by using Autodesk Moldflow Insight (AMI) 2016. The results show total 32.1% reduction of cooling time and 9.86% reduction of warpage in case of MGCCC as compared to conventional cooling. More >

Displaying 1-10 on page 1 of 2. Per Page