Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (290)
  • Open Access

    ARTICLE

    Network Intrusion Detection Based on Feature Selection and Hybrid Metaheuristic Optimization

    Reem Alkanhel1, El-Sayed M. El-kenawy2, Abdelaziz A. Abdelhamid3,4, Abdelhameed Ibrahim5, Manal Abdullah Alohali6, Mostafa Abotaleb7, Doaa Sami Khafaga8,*

    CMC-Computers, Materials & Continua, Vol.74, No.2, pp. 2677-2693, 2023, DOI:10.32604/cmc.2023.033273 - 31 October 2022

    Abstract Applications of internet-of-things (IoT) are increasingly being used in many facets of our daily life, which results in an enormous volume of data. Cloud computing and fog computing, two of the most common technologies used in IoT applications, have led to major security concerns. Cyberattacks are on the rise as a result of the usage of these technologies since present security measures are insufficient. Several artificial intelligence (AI) based security solutions, such as intrusion detection systems (IDS), have been proposed in recent years. Intelligent technologies that require data preprocessing and machine learning algorithm-performance augmentation require… More >

  • Open Access

    ARTICLE

    Hybrid Grey Wolf and Dipper Throated Optimization in Network Intrusion Detection Systems

    Reem Alkanhel1,*, Doaa Sami Khafaga2, El-Sayed M. El-kenawy3, Abdelaziz A. Abdelhamid4,5, Abdelhameed Ibrahim6, Rashid Amin7, Mostafa Abotaleb8, B. M. El-den6

    CMC-Computers, Materials & Continua, Vol.74, No.2, pp. 2695-2709, 2023, DOI:10.32604/cmc.2023.033153 - 31 October 2022

    Abstract The Internet of Things (IoT) is a modern approach that enables connection with a wide variety of devices remotely. Due to the resource constraints and open nature of IoT nodes, the routing protocol for low power and lossy (RPL) networks may be vulnerable to several routing attacks. That’s why a network intrusion detection system (NIDS) is needed to guard against routing assaults on RPL-based IoT networks. The imbalance between the false and valid attacks in the training set degrades the performance of machine learning employed to detect network attacks. Therefore, we propose in this paper… More >

  • Open Access

    ARTICLE

    Central Aggregator Intrusion Detection System for Denial of Service Attacks

    Sajjad Ahmad1, Imran Raza1, M. Hasan Jamal1, Sirojiddin Djuraev2, Soojung Hur3, Imran Ashraf3,*

    CMC-Computers, Materials & Continua, Vol.74, No.2, pp. 2363-2377, 2023, DOI:10.32604/cmc.2023.032694 - 31 October 2022

    Abstract Vehicle-to-grid technology is an emerging field that allows unused power from Electric Vehicles (EVs) to be used by the smart grid through the central aggregator. Since the central aggregator is connected to the smart grid through a wireless network, it is prone to cyber-attacks that can be detected and mitigated using an intrusion detection system. However, existing intrusion detection systems cannot be used in the vehicle-to-grid network because of the special requirements and characteristics of the vehicle-to-grid network. In this paper, the effect of denial-of-service attacks of malicious electric vehicles on the central aggregator of… More >

  • Open Access

    ARTICLE

    A Fused Machine Learning Approach for Intrusion Detection System

    Muhammad Sajid Farooq1, Sagheer Abbas1, Atta-ur-Rahman2, Kiran Sultan3, Muhammad Adnan Khan4,*, Amir Mosavi5,6,7

    CMC-Computers, Materials & Continua, Vol.74, No.2, pp. 2607-2623, 2023, DOI:10.32604/cmc.2023.032617 - 31 October 2022

    Abstract The rapid growth in data generation and increased use of computer network devices has amplified the infrastructures of internet. The interconnectivity of networks has brought various complexities in maintaining network availability, consistency, and discretion. Machine learning based intrusion detection systems have become essential to monitor network traffic for malicious and illicit activities. An intrusion detection system controls the flow of network traffic with the help of computer systems. Various deep learning algorithms in intrusion detection systems have played a prominent role in identifying and analyzing intrusions in network traffic. For this purpose, when the network More >

  • Open Access

    ARTICLE

    Developing a Secure Framework Using Feature Selection and Attack Detection Technique

    Mahima Dahiya*, Nitin Nitin

    CMC-Computers, Materials & Continua, Vol.74, No.2, pp. 4183-4201, 2023, DOI:10.32604/cmc.2023.032430 - 31 October 2022

    Abstract Intrusion detection is critical to guaranteeing the safety of the data in the network. Even though, since Internet commerce has grown at a breakneck pace, network traffic kinds are rising daily, and network behavior characteristics are becoming increasingly complicated, posing significant hurdles to intrusion detection. The challenges in terms of false positives, false negatives, low detection accuracy, high running time, adversarial attacks, uncertain attacks, etc. lead to insecure Intrusion Detection System (IDS). To offset the existing challenge, the work has developed a secure Data Mining Intrusion detection system (DataMIDS) framework using Functional Perturbation (FP) feature… More >

  • Open Access

    ARTICLE

    Classification of Adversarial Attacks Using Ensemble Clustering Approach

    Pongsakorn Tatongjai1, Tossapon Boongoen2,*, Natthakan Iam-On2, Nitin Naik3, Longzhi Yang4

    CMC-Computers, Materials & Continua, Vol.74, No.2, pp. 2479-2498, 2023, DOI:10.32604/cmc.2023.024858 - 31 October 2022

    Abstract As more business transactions and information services have been implemented via communication networks, both personal and organization assets encounter a higher risk of attacks. To safeguard these, a perimeter defence like NIDS (network-based intrusion detection system) can be effective for known intrusions. There has been a great deal of attention within the joint community of security and data science to improve machine-learning based NIDS such that it becomes more accurate for adversarial attacks, where obfuscation techniques are applied to disguise patterns of intrusive traffics. The current research focuses on non-payload connections at the TCP (transmission… More >

  • Open Access

    ARTICLE

    Improved Ant Colony Optimization and Machine Learning Based Ensemble Intrusion Detection Model

    S. Vanitha1,*, P. Balasubramanie2

    Intelligent Automation & Soft Computing, Vol.36, No.1, pp. 849-864, 2023, DOI:10.32604/iasc.2023.032324 - 29 September 2022

    Abstract Internet of things (IOT) possess cultural, commercial and social effect in life in the future. The nodes which are participating in IOT network are basically attracted by the cyber-attack targets. Attack and identification of anomalies in IoT infrastructure is a growing problem in the IoT domain. Machine Learning Based Ensemble Intrusion Detection (MLEID) method is applied in order to resolve the drawback by minimizing malicious actions in related botnet attacks on Message Queue Telemetry Transport (MQTT) and Hyper-Text Transfer Protocol (HTTP) protocols. The proposed work has two significant contributions which are a selection of features… More >

  • Open Access

    ARTICLE

    Multi-Zone-Wise Blockchain Based Intrusion Detection and Prevention System for IoT Environment

    Salaheddine Kably1,2,*, Tajeddine Benbarrad1, Nabih Alaoui2, Mounir Arioua1

    CMC-Computers, Materials & Continua, Vol.74, No.1, pp. 253-278, 2023, DOI:10.32604/cmc.2023.032220 - 22 September 2022

    Abstract Blockchain merges technology with the Internet of Things (IoT) for addressing security and privacy-related issues. However, conventional blockchain suffers from scalability issues due to its linear structure, which increases the storage overhead, and Intrusion detection performed was limited with attack severity, leading to performance degradation. To overcome these issues, we proposed MZWB (Multi-Zone-Wise Blockchain) model. Initially, all the authenticated IoT nodes in the network ensure their legitimacy by using the Enhanced Blowfish Algorithm (EBA), considering several metrics. Then, the legitimately considered nodes for network construction for managing the network using Bayesian-Direct Acyclic Graph (B-DAG), which… More >

  • Open Access

    ARTICLE

    Intrusion Detection Based on Bidirectional Long Short-Term Memory with Attention Mechanism

    Yongjie Yang1, Shanshan Tu1, Raja Hashim Ali2, Hisham Alasmary3,4, Muhammad Waqas5,6,*, Muhammad Nouman Amjad7

    CMC-Computers, Materials & Continua, Vol.74, No.1, pp. 801-815, 2023, DOI:10.32604/cmc.2023.031907 - 22 September 2022

    Abstract With the recent developments in the Internet of Things (IoT), the amount of data collected has expanded tremendously, resulting in a higher demand for data storage, computational capacity, and real-time processing capabilities. Cloud computing has traditionally played an important role in establishing IoT. However, fog computing has recently emerged as a new field complementing cloud computing due to its enhanced mobility, location awareness, heterogeneity, scalability, low latency, and geographic distribution. However, IoT networks are vulnerable to unwanted assaults because of their open and shared nature. As a result, various fog computing-based security models that protect… More >

  • Open Access

    ARTICLE

    Augmenting IoT Intrusion Detection System Performance Using Deep Neural Network

    Nasir Sayed1, Muhammad Shoaib2,*, Waqas Ahmed3, Sultan Noman Qasem4, Abdullah M. Albarrak4, Faisal Saeed5

    CMC-Computers, Materials & Continua, Vol.74, No.1, pp. 1351-1374, 2023, DOI:10.32604/cmc.2023.030831 - 22 September 2022

    Abstract Due to their low power consumption and limited computing power, Internet of Things (IoT) devices are difficult to secure. Moreover, the rapid growth of IoT devices in homes increases the risk of cyber-attacks. Intrusion detection systems (IDS) are commonly employed to prevent cyberattacks. These systems detect incoming attacks and instantly notify users to allow for the implementation of appropriate countermeasures. Attempts have been made in the past to detect new attacks using machine learning and deep learning techniques, however, these efforts have been unsuccessful. In this paper, we propose two deep learning models to automatically More >

Displaying 171-180 on page 18 of 290. Per Page