Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (2)
  • Open Access

    ARTICLE

    Kumaraswamy Inverted Topp–Leone Distribution with Applications to COVID-19 Data

    Amal S. Hassan1, Ehab M. Almetwally2,*, Gamal M. Ibrahim3

    CMC-Computers, Materials & Continua, Vol.68, No.1, pp. 337-358, 2021, DOI:10.32604/cmc.2021.013971

    Abstract In this paper, an attempt is made to discover the distribution of COVID-19 spread in different countries such as; Saudi Arabia, Italy, Argentina and Angola by specifying an optimal statistical distribution for analyzing the mortality rate of COVID-19. A new generalization of the recently inverted Topp Leone distribution, called Kumaraswamy inverted Topp–Leone distribution, is proposed by combining the Kumaraswamy-G family and the inverted Topp–Leone distribution. We initially provide a linear representation of its density function. We give some of its structure properties, such as quantile function, median, moments, incomplete moments, Lorenz and Bonferroni curves, entropies measures and stress-strength reliability. Then,… More >

  • Open Access

    ARTICLE

    Power Inverted Topp–Leone Distribution in Acceptance Sampling Plans

    Tahani A. Abushal1, Amal S. Hassan2, Ahmed R. El-Saeed3, Said G. Nassr4,*

    CMC-Computers, Materials & Continua, Vol.67, No.1, pp. 991-1011, 2021, DOI:10.32604/cmc.2021.014620

    Abstract We introduce a new two-parameter model related to the inverted Topp–Leone distribution called the power inverted Topp–Leone (PITL) distribution. Major properties of the PITL distribution are stated; including; quantile measures, moments, moment generating function, probability weighted moments, Bonferroni and Lorenz curve, stochastic ordering, incomplete moments, residual life function, and entropy measure. Acceptance sampling plans are developed for the PITL distribution, when the life test is truncated at a pre-specified time. The truncation time is assumed to be the median lifetime of the PITL distribution with pre-specified factors. The minimum sample size necessary to ensure the specified life test is obtained… More >

Displaying 1-10 on page 1 of 2. Per Page