Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (57)
  • Open Access

    ARTICLE

    Isogeometric Analysis of Hyperelastic Material Characteristics for Calcified Aortic Valve

    Long Chen1, Ting Li1, Liang Liu1, Wenshuo Wang2,*, Xiaoxiao Du3, Wei Wang3

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.3, pp. 2773-2806, 2024, DOI:10.32604/cmes.2024.046641

    Abstract This study explores the implementation of computed tomography (CT) reconstruction and simulation techniques for patient-specific valves, aiming to dissect the mechanical attributes of calcified valves within transcatheter heart valve replacement (TAVR) procedures. In order to facilitate this exploration, it derives pertinent formulas for 3D multi-material isogeometric hyperelastic analysis based on Hounsfield unit (HU) values, thereby unlocking foundational capabilities for isogeometric analysis in calcified aortic valves. A series of uniaxial and biaxial tensile tests is executed to obtain an accurate constitutive model for calcified active valves. To mitigate discretization errors, methodologies for reconstructing volumetric parametric models, integrating both geometric and material… More > Graphic Abstract

    Isogeometric Analysis of Hyperelastic Material Characteristics for Calcified Aortic Valve

  • Open Access

    ARTICLE

    Full-Scale Isogeometric Topology Optimization of Cellular Structures Based on Kirchhoff–Love Shells

    Mingzhe Huang, Mi Xiao*, Liang Gao, Mian Zhou, Wei Sha, Jinhao Zhang

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.3, pp. 2479-2505, 2024, DOI:10.32604/cmes.2023.045735

    Abstract Cellular thin-shell structures are widely applied in ultralightweight designs due to their high bearing capacity and strength-to-weight ratio. In this paper, a full-scale isogeometric topology optimization (ITO) method based on Kirchhoff–Love shells for designing cellular tshin-shell structures with excellent damage tolerance ability is proposed. This method utilizes high-order continuous nonuniform rational B-splines (NURBS) as basis functions for Kirchhoff–Love shell elements. The geometric and analysis models of thin shells are unified by isogeometric analysis (IGA) to avoid geometric approximation error and improve computational accuracy. The topological configurations of thin-shell structures are described by constructing the effective density field on the control… More >

  • Open Access

    ARTICLE

    A Deep Learning Approach to Shape Optimization Problems for Flexoelectric Materials Using the Isogeometric Finite Element Method

    Yu Cheng1,2,5, Yajun Huang3, Shuai Li4, Zhongbin Zhou5, Xiaohui Yuan1,2,*, Yanming Xu5,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.2, pp. 1935-1960, 2024, DOI:10.32604/cmes.2023.045668

    Abstract A new approach for flexoelectric material shape optimization is proposed in this study. In this work, a proxy model based on artificial neural network (ANN) is used to solve the parameter optimization and shape optimization problems. To improve the fitting ability of the neural network, we use the idea of pre-training to determine the structure of the neural network and combine different optimizers for training. The isogeometric analysis-finite element method (IGA-FEM) is used to discretize the flexural theoretical formulas and obtain samples, which helps ANN to build a proxy model from the model shape to the target value. The effectiveness… More >

  • Open Access

    PROCEEDINGS

    The Nitsche’s Method and Applications in Isogeometric Analysis

    Qingyuan Hu1,*, Yuan Liang2

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.27, No.3, pp. 1-2, 2023, DOI:10.32604/icces.2023.09441

    Abstract The Nitsche’s method is originally proposed as a technique to impose boundary conditions, nowadays it is widely used for isometric analysis (IGA) and corresponding topology optimization applications. Based on our previous research [1], we present a simple way to derive the Nitsche’s formulations for different kind of boundary and interface conditions, and studied this technique in the context of IGA discretization, especially for patch coupling and contact problems. The skew-symmetric variant of the Nitsche’s method is then further studied. For linear boundary or interface conditions, the skew-symmetric formulation is parameterfree. For contact conditions, it remains stable and accurate for a… More >

  • Open Access

    PROCEEDINGS

    A Machine Learning Framework for Isogeometric Topology Optimization

    Haobo Zhang1, Ziao Zhuang1, Chen Yu2, Zhaohui Xia1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.27, No.3, pp. 1-2, 2023, DOI:10.32604/icces.2023.09091

    Abstract Topology optimization (TO) is an important and powerful tool to obtain efficient and lightweight structures in conceptional design stage and a series of representative methods are implemented [1-5]. TO are mainly based on the classical finite element analysis (FEA), resulting in an inconsistency between geometric model and analytical model. Besides, there are some drawbacks of low analysis accuracy, poor continuity between adjacent elements, and high computational cost for high-order meshes. Thus, isogeometric analysis (IGA) is proposed [6] to replace FEA in TO. Using the Non-Uniform Rational B-Splines (NURBS), IGA successfully eliminates the defects of the conventional FEA and forms a… More >

  • Open Access

    ARTICLE

    Application of Isogeometric Analysis Method in Three-Dimensional Gear Contact Analysis

    Long Chen1, Yan Yu1, Yanpeng Shang1, Zhonghou Wang1,*, Jing Zhang2

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.1, pp. 817-846, 2024, DOI:10.32604/cmes.2023.031595

    Abstract Gears are pivotal in mechanical drives, and gear contact analysis is a typically difficult problem to solve. Emerging isogeometric analysis (IGA) methods have developed new ideas to solve this problem. In this paper, a three-dimensional body parametric gear model of IGA is established, and a theoretical formula is derived to realize single-tooth contact analysis. Results were benchmarked against those obtained from commercial software utilizing the finite element analysis (FEA) method to validate the accuracy of our approach. Our findings indicate that the IGA-based contact algorithm successfully met the Hertz contact test. When juxtaposed with the FEA approach, the IGA method… More > Graphic Abstract

    Application of Isogeometric Analysis Method in Three-Dimensional Gear Contact Analysis

  • Open Access

    ARTICLE

    A Hybrid Parallel Strategy for Isogeometric Topology Optimization via CPU/GPU Heterogeneous Computing

    Zhaohui Xia1,3, Baichuan Gao3, Chen Yu2,*, Haotian Han3, Haobo Zhang3, Shuting Wang3

    CMES-Computer Modeling in Engineering & Sciences, Vol.138, No.2, pp. 1103-1137, 2024, DOI:10.32604/cmes.2023.029177

    Abstract This paper aims to solve large-scale and complex isogeometric topology optimization problems that consume significant computational resources. A novel isogeometric topology optimization method with a hybrid parallel strategy of CPU/GPU is proposed, while the hybrid parallel strategies for stiffness matrix assembly, equation solving, sensitivity analysis, and design variable update are discussed in detail. To ensure the high efficiency of CPU/GPU computing, a workload balancing strategy is presented for optimally distributing the workload between CPU and GPU. To illustrate the advantages of the proposed method, three benchmark examples are tested to verify the hybrid parallel strategy in this paper. The results… More > Graphic Abstract

    A Hybrid Parallel Strategy for Isogeometric Topology Optimization via CPU/GPU Heterogeneous Computing

  • Open Access

    PROCEEDINGS

    Broadband Electromagnetic Scattering Analysis with Isogeometric Boundary Element Method Accelerated by Frequency-Decoupling and Model Order Reduction Techniques

    Yujing Ma1, Zhongwang Wang2, Xiaohui Yuan1, Leilei Chen2,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.27, No.2, pp. 1-2, 2023, DOI:10.32604/icces.2023.09662

    Abstract The paper presents a novel fast calculation method for broadband Electromagnetic Scattering analysis. In this work, the isogeometric boundary element method is used to solve Helmholtz equations for the electromagnetic scattering problems. The non-uniform rational B-splines are employed to construct structural geometries and discretize electric and magnetic field integral equations [1,2]. To avoid timeconsuming multi-frequency calculations, the series expansion method is used to decouple the frequencydependent terms from the integrand in the boundary element method [3,4]. The second-order Arnoldi (SOAR) method is applied to construct a reduced-order model that retains the essential structures and key properties of the original model… More >

  • Open Access

    PROCEEDINGS

    Efficient Multigrid Method Based on Adaptive Weighted Jacobi in Isogeometric Analysis

    ShiJie Luo1, Feng Yang1, Yingjun Wang1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.27, No.1, pp. 1-1, 2023, DOI:10.32604/icces.2023.09474

    Abstract The isogeometric analysis Method (IGA) is an efficient and accurate engineering analysis method. However, in order to obtain accurate analysis results, the grid must be refined, and the increase of the number of refinements will lead to large-scale equations, which will increase the computational cost. Compared with the traditional equation solvers such as preconditioned conjugate gradient method (PCG), generalized minimal residual (GMRES), the advantage of multigrid method is that the convergence rate is independent of grid scale when solving large-scale equations. This paper presents an adaptive weighted Jacobi method to improve the convergence of geometric multigrid method to efficiently solve… More >

  • Open Access

    PROCEEDINGS

    Robust Shape Optimization of Sound Barriers Based on Isogeometric Boundary Element Method and Polynomial Chaos Expansion

    Xuhang Lin1, Haibo Chen1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.27, No.1, pp. 1-1, 2023, DOI:10.32604/icces.2023.09388

    Abstract As an important and useful tool for reducing noise, the sound barrier is of practical significance. The sound barrier has different noise reduction effects for different sizes, shapes and properties of the sound absorbing material. Liu et al. [1] have performed shape optimization of sound barriers by using isogeometric boundary element method and method of moving asymptotes (MMA). However, in engineering practice, it is difficult to determine some parameters accurately such as material properties, geometries, external loads. Therefore, it is necessary to consider these uncertainty conditions in order to ensure the rationality of the numerical calculation of engineering problems. In… More >

Displaying 1-10 on page 1 of 57. Per Page