Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (57)
  • Open Access

    PROCEEDINGS

    An Automatic Post-Processing Procedure for Isogeometric Topology Optimization Results

    Yuhao Yang1, Yingjun Wang1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.26, No.2, pp. 1-1, 2023, DOI:10.32604/icces.2023.09068

    Abstract In the intelligent structural optimization, designers can obtain a high-performance design scheme automatically with the help of topology optimization (TO). Since computer aided design (CAD) and computer aided engineering (CAE) models have different geometric representations in TO, the optimized results must be reconstructed to generate CAD models, which is complicated and time-consuming. To address this issue, the isogeometric analysis (IGA) is employed in TO to replace the finite element method (FEM), and such TO is termed as isogeometric TO (ITO). ITO is an advanced TO method with high efficiency and accuracy. It uses the same non-uniform rational B-spline (NURBS) basis… More >

  • Open Access

    PROCEEDINGS

    Acoustic Topology Optimization of Sound Absorbing Materials Directly from Subdivision Surfaces with IGA-FEM/BEM

    Yanming Xu1,2, Leilei Chen1,2,*, Haojie Lian3

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.26, No.1, pp. 1-1, 2023, DOI:10.32604/icces.2023.010581

    Abstract An isogeometric coupling algorithm based on the finite element method and the boundary element method (IGA-FEM/BEM) is proposed for the simulation of acoustic fluid-structure interaction and structuralacoustic topology optimization using the direct differentiation method. The geometries are constructed from triangular control meshes through Loop subdivision scheme. The effect of sound-absorbing materials on the acoustic response is characterized by acoustic impedance boundary conditions. The optimization problem is formulated in the framework of Solid Isotropic Material with Penalization methods and the sound absorption coefficients on elements are selected as design variables. Numerical examples are presented to demonstrate the validity and efficiency of… More >

  • Open Access

    PROCEEDINGS

    A Shape Optimization Approach for 3D Doubly-Periodic Multi-Layered Systems

    Haibo Chen1,*, Fuhang Jiang1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.26, No.1, pp. 1-1, 2023, DOI:10.32604/icces.2023.09414

    Abstract Acoustic wave propagation has been the subject of many studies in engineering and physics. Researchers have shown an increased interest in recent years in the acoustic scattering of periodic systems, such as phononic crystals and metamaterials [1]. These artificial periodic systems possess some particular acoustic characteristics including noise control, waveguides and negative refraction, which manifest excellent potential applicability in acoustic engineering. Based on the isogeometric acoustic boundary element method (BEM) [2], an efficient shape optimization approach is proposed in this research for threedimensional doubly-periodic multi-layered systems. The interfaces between different acoustic mediums are infinite doubly periodic surfaces, which can be… More >

  • Open Access

    ARTICLE

    Parameterization Transfer for a Planar Computational Domain in Isogeometric Analysis

    Jinlan Xu*, Shuxin Xiao, Gang Xu, Renshu Gu

    CMES-Computer Modeling in Engineering & Sciences, Vol.137, No.2, pp. 1957-1973, 2023, DOI:10.32604/cmes.2023.028665

    Abstract In this paper, we propose a parameterization transfer algorithm for planar domains bounded by B-spline curves, where the shapes of the planar domains are similar. The domain geometries are considered to be similar if their simplified skeletons have the same structures. One domain we call source domain, and it is parameterized using multi-patch B-spline surfaces. The resulting parameterization is C1 continuous in the regular region and G1 continuous around singular points regardless of whether the parameterization of the source domain is C1/G1 continuous or not. In this algorithm, boundary control points of the source domain are extracted from its parameterization… More >

  • Open Access

    ARTICLE

    New Perspective to Isogeometric Analysis: Solving Isogeometric Analysis Problem by Fitting Load Function

    Jingwen Ren1, Hongwei Lin1,2,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.136, No.3, pp. 2957-2984, 2023, DOI:10.32604/cmes.2023.025983

    Abstract Isogeometric analysis (IGA) is introduced to establish the direct link between computer-aided design and analysis. It is commonly implemented by Galerkin formulations (isogeometric Galerkin, IGA-G) through the use of nonuniform rational B-splines (NURBS) basis functions for geometric design and analysis. Another promising approach, isogeometric collocation (IGA-C), working directly with the strong form of the partial differential equation (PDE) over the physical domain defined by NURBS geometry, calculates the derivatives of the numerical solution at the chosen collocation points. In a typical IGA, the knot vector of the NURBS numerical solution is only determined by the physical domain. A new perspective… More > Graphic Abstract

    New Perspective to Isogeometric Analysis: Solving Isogeometric Analysis Problem by Fitting Load Function

  • Open Access

    ARTICLE

    Isogeometric Analysis of Longitudinal Displacement of a Simplified Tunnel Model Based on Elastic Foundation Beam

    Zhihui Xiong*, Lei Kou, Jinjie Zhao, Hao Cui, Bo Wang

    CMES-Computer Modeling in Engineering & Sciences, Vol.136, No.1, pp. 803-824, 2023, DOI:10.32604/cmes.2023.024833

    Abstract Serious uneven settlement of the tunnel may directly cause safety problems. At this stage, the deformation of the tunnel is predicted and analyzed mainly by numerical simulation, while the commonly used finite element method (FEM) uses low-order continuous elements. Therefore, the accuracy of tunnel settlement prediction is not enough. In this paper, a method is proposed to study the vertical deformation of the tunnel by using the combination of isogeometric analysis (IGA) and Bézier extraction operator. Compared with the traditional IGA method, this method can be easily integrated into the existing FEM framework, and ensure the same accuracy. A numerical… More >

  • Open Access

    ARTICLE

    Panel Acoustic Contribution Analysis in Automotive Acoustics Using Discontinuous Isogeometric Boundary Element Method

    Yi Sun1,2,*, Chihua Lu1,2, Zhien Liu1,2, Menglei Sun1, Hao Chen1

    CMES-Computer Modeling in Engineering & Sciences, Vol.135, No.3, pp. 2307-2330, 2023, DOI:10.32604/cmes.2023.025313

    Abstract In automotive industries, panel acoustic contribution analysis (PACA) is used to investigate the contributions of the body panels to the acoustic pressure at a certain point of interest. Currently, PACA is implemented mostly by either experiment-based methods or traditional numerical methods. However, these schemes are effort-consuming and inefficient in solving engineering problems, thereby restraining the further development of PACA in automotive acoustics. In this work, we propose a PACA scheme using discontinuous isogeometric boundary element method (IGABEM) to build an easily implementable and efficient method to identify the relative acoustic contributions of each automotive body panel. Discontinuous IGABEM is more… More >

  • Open Access

    ARTICLE

    Explicit Isogeometric Topology Optimization Method with Suitably Graded Truncated Hierarchical B-Spline

    Haoran Zhu, Xinhao Gao, Aodi Yang, Shuting Wang, Xianda Xie, Tifan Xiong*

    CMES-Computer Modeling in Engineering & Sciences, Vol.135, No.2, pp. 1435-1456, 2023, DOI:10.32604/cmes.2022.023454

    Abstract This work puts forward an explicit isogeometric topology optimization (ITO) method using moving morphable components (MMC), which takes the suitably graded truncated hierarchical B-Spline based isogeometric analysis as the solver of physical unknown (SGTHB-ITO-MMC). By applying properly basis graded constraints to the hierarchical mesh of truncated hierarchical B-splines (THB), the convergence and robustness of the SGTHB-ITOMMC are simultaneously improved and the tiny holes occurred in optimized structure are eliminated, due to the improved accuracy around the explicit structural boundaries. Moreover, an efficient computational method is developed for the topological description functions (TDF) of MMC under the admissible hierarchical mesh, which… More > Graphic Abstract

    Explicit Isogeometric Topology Optimization Method with Suitably Graded Truncated Hierarchical B-Spline

  • Open Access

    ARTICLE

    An Isogeometric Cloth Simulation Based on Fast Projection Method

    Xuan Peng1,*, Chao Zheng2,3,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.134, No.3, pp. 1837-1853, 2023, DOI:10.32604/cmes.2022.022367

    Abstract A novel continuum-based fast projection scheme is proposed for cloth simulation. Cloth geometry is described by NURBS, and the dynamic response is modeled by a displacement-only Kirchhoff-Love shell element formulated directly on NURBS geometry. The fast projection method, which solves strain limiting as a constrained Lagrange problem, is extended to the continuum version. Numerical examples are studied to demonstrate the performance of the current scheme. The proposed approach can be applied to grids of arbitrary topology and can eliminate unrealistic over-stretching efficiently if compared to spring-based methodologies. More >

  • Open Access

    ARTICLE

    Topology Optimization of Sound-Absorbing Materials for Two-Dimensional Acoustic Problems Using Isogeometric Boundary Element Method

    Jintao Liu1, Juan Zhao1, Xiaowei Shen1,2,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.134, No.2, pp. 981-1003, 2023, DOI:10.32604/cmes.2022.021641

    Abstract In this work, an acoustic topology optimization method for structural surface design covered by porous materials is proposed. The analysis of acoustic problems is performed using the isogeometric boundary element method. Taking the element density of porous materials as the design variable, the volume of porous materials as the constraint, and the minimum sound pressure or maximum scattered sound power as the design goal, the topology optimization is carried out by solid isotropic material with penalization (SIMP) method. To get a limpid 0–1 distribution, a smoothing Heaviside-like function is proposed. To obtain the gradient value of the objective function, a… More >

Displaying 11-20 on page 2 of 57. Per Page